cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A361964 Total number of peaks in 2-Fuss-skew paths of semilength n.

Original entry on oeis.org

2, 20, 226, 2696, 33138, 415164, 5270850, 67576208, 872918690, 11343392228, 148120453538, 1941910368280, 25545250484498, 337010368660876, 4457154741645954, 59076597464830240, 784518823873380930, 10435840680299248052, 139030100339736030306, 1854730153008453738408
Offset: 1

Views

Author

R. J. Mathar, Mar 31 2023

Keywords

Crossrefs

Cf. A026378 (1-Fuss-skew), A361965 (3-Fuss-skew)

Programs

  • Maple
    FussSkewP := proc(l,n)
        local a,j,k ;
        a := 0 ;
        for j from 0 to n do
            a := a+sum( binomial(n,j) *binomial(j,k) *binomial(n*(l-1),n-2*j+k-1)
            * 2^(n*(l-2)+2*j-k+1)*3^(k-1)*(3*(n-j)+k),k=0..j) ;
        end do:
        a/n ;
    end proc:
    seq(FussSkewP(2,n),n=1..40) ;

Formula

D-finite with recurrence 2*n *(2*n-1) *(98653*n-203080) *a(n) +(-5301667*n^3 +13746049*n^2 -3506028*n -3685230) *a(n-1) +(-1931311*n^3 +43294062*n^2 -151212227*n +137614530) *a(n-2) +(n-3)*(8016735*n^2 -44290066*n +61812586) *a(n-3) +5*(n-3) *(n-4) *(129715*n-300617) *a(n-4)=0.
Showing 1-1 of 1 results.