cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361972 Decimal expansion of lim_{n->oo} ( Sum_{k=2..n} 1/(k*log(k)) - log(log(n)) ).

This page as a plain text file.
%I A361972 #50 Mar 26 2025 08:31:59
%S A361972 7,9,4,6,7,8,6,4,5,4,5,2,8,9,9,4,0,2,2,0,3,8,9,7,9,6,2,0,6,5,1,4,9,5,
%T A361972 1,4,0,6,4,9,9,9,5,9,0,8,8,2,8,0,4,9,6,8,9,0,1,5,1,2,0,9,5,0,1,4,8,1,
%U A361972 7,8,5,8,9,6,0,6,8,7,5,6,6,6,9,6,6,1,4,7,7,7,6,2,7,3,3
%N A361972 Decimal expansion of lim_{n->oo} ( Sum_{k=2..n} 1/(k*log(k)) - log(log(n)) ).
%C A361972 Let u(n) = Sum_{k=2..n} 1/(k*log(k)) - log(log(n)), then (u(n)) is strictly decreasing and lower bounded by -log(log(2)) = A074785, so (u(n)) is convergent, while the series v(n) = Sum_{k=2..n} 1/(k*log(k)) diverges (see Mathematics Stack Exchange link).
%C A361972 Compare with w(n) = Sum_{k=1..n} 1/k - log(n) that converges (A001620), while the harmonic series H(n) = Sum_{k=1..n} 1/k diverges.
%D A361972 J. Guégand and M.-A. Maingueneau, Exercices d'Analyse, Exercice 1.18 p. 23, 1988, Classes Préparatoires aux Grandes Ecoles, Ellipses.
%H A361972 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/574503/infinite-series-sum-n-2-infty-frac1n-log-n">Infinite series Sum_{n=2..oo} 1/(n*log(n))</a>.
%F A361972 Limit_{n->oo} 1/(2*log(2)) + 1/(3*log(3)) + ... + 1/(n*log(n)) - log(log(n)).
%F A361972 Equals A241005 - log(log(2)) = A241005 + A074785. - _Amiram Eldar_, Apr 08 2023
%e A361972 0.79467864545289940220389796...
%p A361972 limit(sum(1/(k*log(k)), k=2..n) - log(log(n)), n = infinity);
%Y A361972 Cf. A001620, A074785, A241005.
%K A361972 nonn,cons
%O A361972 0,1
%A A361972 _Bernard Schott_, Apr 08 2023