This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361975 #16 Jun 07 2023 04:40:20 %S A361975 4,7,16,12,23,36,19,32,47,64,28,43,60,79,100,39,56,75,96,119,144,52, %T A361975 71,92,115,140,167,196,67,88,111,136,163,192,223,256,84,107,132,159, %U A361975 188,219,252,287,324,103,128,155,184,215,248,283,320,359,400,124,151 %N A361975 (2,1)-block array, B(2,1), of the natural number array (A000027), read by descending antidiagonals. %C A361975 We begin with a definition. Suppose that W = (w(i,j)), where i >= 1 and j >= 1, is an array of numbers such that if m and n satisfy 1 <= m < n, then there exists k such that w(m,k+h) < w(n,h+1) < w(m,k+h+1) for every h >= 0. Then W is a row-splitting array. The array B(2,1) is a row-splitting array. The rows and columns of B(2,1) are linearly recurrent with signature (3,-3,1). It appears that the order array (as defined in A333029) of B(2,1) is given by A056537 (the dispersion of the nonsquares). %F A361975 B(2,1) = (b(i,j)), where b(i,j) = w(2i-1, j) + w(2i, j) for i >= 1, j >= 1, where (w(i,j)) is the natural number array (A000027). %F A361975 b(i,j) = 4i - 1 + (2i + j - 2)^2. %e A361975 Corner of B(2,1): %e A361975 4 7 12 19 28 39 52 %e A361975 16 23 32 43 56 71 88 %e A361975 36 47 60 75 92 111 132 %e A361975 64 79 96 115 136 159 184 %e A361975 100 119 140 163 188 215 244 %e A361975 144 167 192 219 238 279 312 %e A361975 (column 1 of A000027) = (1,3,6,10,15,21,...), so (column 1 of B(2,1)) = (4,16,64,...); %e A361975 (column 2 of A000027) = (2,5,9,14,20,27,...), so (column 2 of B(2,1)) = (7,23,47,...). %t A361975 zz = 10; z = 13; %t A361975 w[n_, k_] := n + (n + k - 2) (n + k - 1)/2; %t A361975 t[h_, k_] := w[2 h - 1, k] + w[2 h, k]; %t A361975 Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* this sequence *) %t A361975 TableForm[Table[t[h, k], {h, 1, zz}, {k, 1, z}]] (* this sequence as an array *) %Y A361975 Cf. A000027, A056537, A333029, A361974 (array B(1,2)), A361976 (array B(2,2)). %K A361975 nonn,tabl %O A361975 1,1 %A A361975 _Clark Kimberling_, Apr 01 2023