A361976 (2,2)-block array, B(2,2), of the natural number array (A000027), read by descending antidiagonals.
11, 31, 39, 67, 75, 83, 119, 127, 135, 143, 187, 195, 203, 211, 219, 271, 279, 287, 295, 303, 311, 371, 379, 387, 395, 403, 411, 419, 487, 495, 503, 511, 519, 527, 535, 543, 619, 627, 635, 643, 651, 659, 667, 675, 683, 767, 775, 783, 791, 799, 807, 815, 823
Offset: 1
Examples
Corner of B(2,2): 11 31 67 119 187 271 39 75 127 195 279 379 83 135 203 287 387 503 143 211 295 395 511 643 219 303 403 519 651 799
Programs
-
Mathematica
zz = 10; z = 13; w[n_, k_] := n + (n + k - 2) (n + k - 1)/2; t[n_, k_] := w[2 n - 1, 2 k - 1] + w[2 n - 1, 2 k] + w[2 n, 2 k - 1] + w[2 n, 2 k] Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (*A361976 sequence*) TableForm[Table[t[h, k], {h, 1, zz}, {k, 1, z}]] (*A361976 array*)
Formula
B(2,2) = (b(i,j)), where b(i,j) = w(2i-1,2j-1) + w(2i-1,2j) + w(2i,2j-1) + w(2i, 2j) for i >= 1, j >=1, where (w(i,j)) is the natural number array (A000027).
b(i,j) = 8(i+j)^2 - 12i - 20 j + 11.
Comments