This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361989 #30 Mar 21 2024 08:37:08 %S A361989 0,0,1,0,2,1,0,4,3,2,1,0,7,6,5,4,3,2,1,0,12,11,10,9,8,7,6,5,4,3,2,1,0, %T A361989 20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0,33,32,31,30,29, %U A361989 28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 %N A361989 a(n) is the sum of the Fibonacci numbers missing from the dual Zeckendorf representation of n; a(0) = 0, and for n > 0, a(n) = A022290(A035327(A003754(n+1))). %C A361989 We consider that a Fibonacci number is missing from the dual Zeckendorf representation of a number if it does not appear in this representation and a larger Fibonacci number appears in it. %C A361989 The dual Zeckendorf representation is also known as the lazy Fibonacci representation (see A356771 for further details). %C A361989 This sequence can also be seen as an irregular table T(n, k), n > 0, k = 1..A000045(n), where T(n, k) = A000045(n) - k. %C A361989 a(n-1) for n>=1 is the starting position of the first occurrence of one of the longest words w in the Fibonacci word A003849 such that no length-n factor of w is repeated. The length of such words is 2n. (See links) - _Gandhar Joshi_, Mar 19 2024 %H A361989 Gandhar Joshi, <a href="/A361989/a361989_2.txt">Walnut code and details</a> %H A361989 <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a> %F A361989 a(n) = A000045(A072649(n)) - A194029(n) for n > 0. %F A361989 a(n) = A130312(n) - A194029(n) for n > 0. %e A361989 For n = 42: %e A361989 - using F(k) = A000045(k), %e A361989 - the dual Zeckendorf representation of 42 is F(8) + F(7) + F(5) + F(3) + F(2), %e A361989 - the numbers F(6) and F(4) are missing, %e A361989 - so a(42) = F(6) + F(4) = 8 + 3 = 11. %e A361989 . %e A361989 As an irregular triangle the sequence begins: %e A361989 0; %e A361989 0; %e A361989 1, 0; %e A361989 2, 1, 0; %e A361989 4, 3, 2, 1, 0; %e A361989 7, 6, 5, 4, 3, 2, 1, 0; %e A361989 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0; %e A361989 ... %o A361989 (PARI) for (n = 1, 9, for (k = 1, f = fibonacci(n), print1 (f-k", "))) %Y A361989 Cf. A000045, A003754, A022290, A035327, A072649, A130312, A132665, A194029, A356771. %K A361989 nonn,base,tabf %O A361989 0,5 %A A361989 _Rémy Sigrist_, Apr 02 2023