cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A361993 (2,1)-block array, B(2,1), of the Wythoff array (A035513), read by descending antidiagonals.

Original entry on oeis.org

5, 9, 15, 14, 25, 26, 23, 40, 43, 36, 37, 65, 69, 59, 47, 60, 105, 112, 95, 77, 57, 97, 170, 181, 154, 124, 93, 68, 157, 275, 293, 249, 201, 150, 111, 78, 254, 445, 474, 403, 325, 243, 179, 127, 89, 411, 720, 767, 652, 526, 393, 290, 205, 145, 99, 665, 1165
Offset: 1

Views

Author

Clark Kimberling, Apr 04 2023

Keywords

Comments

We begin with a definition. Suppose that W = (w(i,j)), where i >= 1 and j >= 1, is an array of numbers such that if m and n satisfy 1 <= m < n, then there exists k such that w(m,k+h) < w(n,h+1) < w(m,k+h+1) for every h >= 0. Then W is a row-splitting array. The array B(2,1) is a row-splitting array. The rows of B(2,1) are linearly recurrent with signature (1,1); the columns are linearly recurrent with signature (1,1,-1). The order array (as defined in A333029) of B(2,1) is A361995.

Examples

			Corner of B(2,1):
   5    9   14   23   37   60   97  157 ...
  15   25   40   65  105  170  275  445 ...
  26   43   69  112  181  293  474  767 ...
  36   59   95  154  249  403  652 1055 ...
  47   77  124  202  325  526  851 1377 ...
  ...
(column 1 of A035513) = (1,4,6,9,12,14,17,19,...), so (column 1 of B(2,1)) = (5,15,26,36,...);
(column 2 of A000027) = (2,7,10,15,20,23,28,31,...), so (column 2 of B(2,1)) = (9,25,43,59,...).
		

Crossrefs

Cf. A000045, A001622, A035513, A080164, A361975, A361992 (array B(1,2)), A361994 (array B(2,2)).

Programs

  • Mathematica
    f[n_] := Fibonacci[n]; r = GoldenRatio;
    zz = 10; z = 13;
    w[n_, k_] := f[k + 1] Floor[n*r] + (n - 1) f[k]
    t[h_, k_] := w[2 h - 1, k] + w[2 h, k];
    Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A361993 sequence *)
    TableForm[Table[t[h, k], {h, 1, zz}, {k, 1, z}]] (* A361993 array *)

Formula

B(2,1) = (b(i,j)), where b(i,j) = w(2i-1,j) + w(2i,j) for i >= 1, j >= 1, where (w(i,j)) is the Wythoff array (A035513).
b(i,j) = F(j+1) ([2 i r] + [(2 i - 1) r]) + (4 i - 3) F(j), where F = A000045, the Fibonacci numbers, and r = (1+sqrt(5))/2, the golden ratio, A001622, and [ ] = floor.
Showing 1-1 of 1 results.