This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361996 #12 May 20 2023 15:48:18 %S A361996 1,2,3,6,7,4,15,17,11,5,39,43,28,14,8,102,112,73,38,20,9,268,292,191, %T A361996 100,51,23,10,568,592,491,263,132,61,27,12,868,892,791,563,345,159,72, %U A361996 32,13,1168,1192,1091,863,645,416,189,83,35,16,1468,1492,1391 %N A361996 Order array of A361994, read by descending antidiagonals. %C A361996 This array is an interspersion (hence a dispersion, as in A114537 and A163255), so every positive integer occurs exactly once. See A333029 for the definition of order array. %e A361996 Corner: %e A361996 1 2 6 15 39 102 268 ... %e A361996 3 7 17 43 112 292 592 ... %e A361996 4 11 28 73 191 491 791 ... %e A361996 5 14 38 100 263 563 863 ... %e A361996 8 20 51 132 345 645 945 ... %e A361996 9 23 61 159 416 716 1016 ... %e A361996 ... %t A361996 zz = 300; z = 30; %t A361996 w[n_, k_] := w[n, k] = Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; %t A361996 b[h_, k_] := b[h, k] = w[2 h - 1, 2 k - 1] + w[2 h - 1, 2 k] + w[2 h, 2 k - 1] + w[2 h, 2 k]; %t A361996 s = Flatten[Table[b[h, k], {h, 1, zz}, {k, 1, z}]]; %t A361996 r[h_, k_] := Length[Select[s, # <= b[h, k] &]] %t A361996 TableForm[Table[r[h, k], {h, 1, 50}, {k, 1, 12}]](*A351996, array*) %t A361996 v = Table[r[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (*A351996, sequence *) %Y A361996 Cf. A114537, A163255, A333029, A361993, A361996. %K A361996 nonn,tabl %O A361996 1,2 %A A361996 _Clark Kimberling_, Apr 05 2023