cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362004 Initial digit of the decimal expansion of the tetration 2^^n (in Don Knuth's up-arrow notation).

This page as a plain text file.
%I A362004 #15 Feb 16 2025 08:34:05
%S A362004 1,2,4,1,6,2,2
%N A362004 Initial digit of the decimal expansion of the tetration 2^^n (in Don Knuth's up-arrow notation).
%C A362004 The most significant digit of the base-10 representation of 2^(2^(2^...)) n times is given by floor(2^^n/10^(len(2^^n)-1)), where len(2^^n) indicates the number of digits of the argument.
%C A362004 Although it is known that 2^^6 starts with the digit 2 (see A241291), a(7) is not currently known (for details, see Googology link, section "First digits in tetration").
%H A362004 Googology, <a href="https://googology.fandom.com/wiki/Tetration">Tetration</a>.
%H A362004 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PowerTower.html">Power Tower</a>
%H A362004 Wikipedia, <a href="https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation">Knuth's up-arrow notation</a>
%H A362004 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetration">Tetration</a>
%F A362004 a(n) = floor(2^^n/10^floor(log(2^^n))).
%e A362004 a(4) = 6, since 2^^4 = 65536.
%Y A362004 Cf. A241291, A241299, A244059.
%K A362004 base,hard,more,nonn
%O A362004 0,2
%A A362004 _Marco RipĂ _, Apr 02 2023