This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362009 #37 Apr 30 2023 20:54:05 %S A362009 1,2,3,6,7,12,14,15,25,28,31,34,35,38,45,62,67,72,76,78,80,83,90,91, %T A362009 100,107,114,116,126,129,142,144,147,155,158,168,171,173,175,180,185, %U A362009 198,205,226,228,250,257,260,262,266,272,274,279,290,294,296,310,313 %N A362009 a(n) is the index of the first binary string which does not appear in the concatenation of the binary strings indexed by the preceding terms a(1..n-1). %C A362009 Binary strings are indexed starting from 1 and ordered by length, and lexicographically among equal length, so 0, 1, 00, 01, 10, 11, 000, ... %C A362009 The strings indexed by this sequence can be concatenated to form a binary constant b = .010011000... (see A362240). %C A362009 By construction every binary string is present at least once in the digits of b. It follows that b is an irrational number. %C A362009 Are the frequencies of 0 and 1 equal in b? %C A362009 Or more generally, do binary strings of the same length appear with the same frequency and if so, how does the frequency depend on the length? %H A362009 Neal Gersh Tolunsky, <a href="/A362009/b362009.txt">Table of n, a(n) for n = 1..10000</a> %e A362009 The sequence begins %e A362009 n = 1, 2, 3, 4, 5, 6, 7, 8, ... %e A362009 a(n) = 1, 2, 3, 6, 7, 12, 14, 15, ... %e A362009 string = 0 1 00 11 000 101 111 0000 ... %e A362009 At n=4, strings 01 and 10 have already appeared in the preceding concatenation "0 1 00", and 11 is the next which has not so that a(4) = 6. %e A362009 Strings kept and skipped begin %e A362009 0-1-00-(skip 01)-(skip 10)-11-000-(skip 001)... %t A362009 lcad[1] := {{0}, {1}}; %t A362009 lcad[n_] := %t A362009 lcad[n] = %t A362009 Join[Prepend[#, 0] & /@ lcad[n - 1], %t A362009 Prepend[#, 1] & /@ lcad[n - 1]]; (* lcad[n] produces the list of binary strings of length n *) %t A362009 nmx = 6; (* strings of length six or less *) %t A362009 lsf = {}; nc0 = nc = 0; %t A362009 Do[Do[++nc; %t A362009 If[! MatchQ[lsf, List[___, Sequence @@ sc, ___]], %t A362009 lsf = Join[lsf, sc]; Print[{++nc0, nc}]], {sc, lcad[n]}], {n, nmx}] %t A362009 (* Prints the sequence in the form {n,a[n]} for n=1,2,...,29 %t A362009 this corresponds to strings of length six or less *) %o A362009 (Python) %o A362009 from itertools import count, islice, product %o A362009 def agen(): # generator of terms %o A362009 w, i = "", 0 %o A362009 for d in count(1): %o A362009 for b in product("01", repeat=d): %o A362009 b = "".join(b) %o A362009 i += 1 %o A362009 if b not in w: %o A362009 yield i %o A362009 w += b %o A362009 print(list(islice(agen(), 58))) # _Michael S. Branicky_, Apr 03 2023 %Y A362009 Cf. A362240, A362241, A118247. %K A362009 nonn,base %O A362009 1,2 %A A362009 _L. L. Salcedo_, Apr 03 2023