cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362013 Triangular array read by rows. T(n,k) is the number of labeled directed graphs on [n] with exactly k strongly connected components of size 1 with outdegree zero, n>=0, 0<=k<=n.

This page as a plain text file.
%I A362013 #12 Apr 05 2023 06:37:41
%S A362013 1,0,1,1,2,1,27,27,9,1,2401,1372,294,28,1,759375,253125,33750,2250,75,
%T A362013 1,887503681,171774906,13852815,595820,14415,186,1,3938980639167,
%U A362013 437664515463,20841167403,551353635,8751645,83349,441,1,67675234241018881,4263006881324024,117484441611292,1850148686792,18210124870,114709448,451612,1016,1
%N A362013 Triangular array read by rows.  T(n,k) is the number of labeled directed graphs on [n] with exactly k strongly connected components of size 1 with outdegree zero, n>=0, 0<=k<=n.
%H A362013 E. de Panafieu and S. Dovgal, <a href="https://arxiv.org/abs/1903.09454">Symbolic method and directed graph enumeration</a>, arXiv:1903.09454 [math.CO], 2019.
%e A362013 Triangle T(n,k) begins:
%e A362013        1;
%e A362013        0,      1;
%e A362013        1,      2,     1;
%e A362013       27,     27,     9,    1;
%e A362013     2401,   1372,   294,   28,  1;
%e A362013   759375, 253125, 33750, 2250, 75, 1;
%e A362013   ...
%t A362013 nn = 6; B[n_] := n! 2^Binomial[n, 2] ; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]]; s[z_] := Total[strong Table[z^i/i!, {i, 1, 58}]];
%t A362013 ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /.Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}]; Table[ Take[(Table[B[n], {n, 0, nn}] CoefficientList[   Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-s[z]]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}]
%Y A362013 Cf. A086206 (column k=0), A053763 (row sums), A361592, A350792 (a subclass of the digraphs for the case k=1 of this sequence), A003028.
%K A362013 nonn,tabl
%O A362013 0,5
%A A362013 _Geoffrey Critzer_, Apr 03 2023