cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362022 a(n) is the least positive integer whose binary expansion is the concatenation of the binary expansions of two numbers whose product is n.

This page as a plain text file.
%I A362022 #17 Apr 07 2023 10:51:31
%S A362022 3,5,7,9,11,11,15,17,15,21,23,19,27,23,23,33,35,27,39,37,31,43,47,35,
%T A362022 45,45,39,39,59,43,63,65,47,69,47,51,75,77,55,69,83,55,87,75,63,87,95,
%U A362022 67,63,85,71,77,107,75,91,71,79,93,119,79,123,95,79,129,93
%N A362022 a(n) is the least positive integer whose binary expansion is the concatenation of the binary expansions of two numbers whose product is n.
%C A362022 For any prime number p, a(p) is the least of the binary concatenation of p with 1 or the binary concatenation of 1 with p.
%H A362022 Michael De Vlieger, <a href="/A362022/b362022.txt">Table of n, a(n) for n = 1..10000</a>
%F A362022 a(n) <= 2*n + 1.
%F A362022 a(n) <= 2^A070939(n) + n.
%F A362022 a(n) = Min_{d | n} A163621(n/d, d).
%e A362022 The first terms, alongside their binary expansion split into two parts, are:
%e A362022   n   a(n)  bin(a(n))
%e A362022   --  ----  ---------
%e A362022    1     3  1|1
%e A362022    2     5  10|1
%e A362022    3     7  11|1
%e A362022    4     9  100|1
%e A362022    5    11  101|1
%e A362022    6    11  10|11
%e A362022    7    15  111|1
%e A362022    8    17  1000|1
%e A362022    9    15  11|11
%e A362022   10    21  1010|1
%e A362022   11    23  1011|1
%e A362022   12    19  100|11
%e A362022   13    27  1101|1
%e A362022   14    23  10|111
%e A362022   15    23  101|11
%t A362022 Table[Min@ Map[FromDigits[Join @@ #, 2] &, Join @@ {#, Reverse /@ #}] &@ Map[IntegerDigits[#, 2] &, Transpose@{#, n/#}, {2}] &@ TakeWhile[Divisors[n], # <= Sqrt[n] &], {n, 60}] (* _Michael De Vlieger_, Apr 07 2023 *)
%o A362022 (PARI) a(n, base = 2) = { my (v = oo); fordiv (n, d, v = min(v, n/d * base^#digits(d, base) + d);); return (v); }
%o A362022 (Python)
%o A362022 from sympy import divisors
%o A362022 def a(n): return min(d+((n//d)<<d.bit_length()) for d in divisors(n))
%o A362022 print([a(n) for n in range(1, 66)]) # _Michael S. Branicky_, Apr 05 2023
%Y A362022 Cf. A070939, A163621, A362023 (decimal variant).
%K A362022 nonn,base
%O A362022 1,1
%A A362022 _Rémy Sigrist_, Apr 05 2023