This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362022 #17 Apr 07 2023 10:51:31 %S A362022 3,5,7,9,11,11,15,17,15,21,23,19,27,23,23,33,35,27,39,37,31,43,47,35, %T A362022 45,45,39,39,59,43,63,65,47,69,47,51,75,77,55,69,83,55,87,75,63,87,95, %U A362022 67,63,85,71,77,107,75,91,71,79,93,119,79,123,95,79,129,93 %N A362022 a(n) is the least positive integer whose binary expansion is the concatenation of the binary expansions of two numbers whose product is n. %C A362022 For any prime number p, a(p) is the least of the binary concatenation of p with 1 or the binary concatenation of 1 with p. %H A362022 Michael De Vlieger, <a href="/A362022/b362022.txt">Table of n, a(n) for n = 1..10000</a> %F A362022 a(n) <= 2*n + 1. %F A362022 a(n) <= 2^A070939(n) + n. %F A362022 a(n) = Min_{d | n} A163621(n/d, d). %e A362022 The first terms, alongside their binary expansion split into two parts, are: %e A362022 n a(n) bin(a(n)) %e A362022 -- ---- --------- %e A362022 1 3 1|1 %e A362022 2 5 10|1 %e A362022 3 7 11|1 %e A362022 4 9 100|1 %e A362022 5 11 101|1 %e A362022 6 11 10|11 %e A362022 7 15 111|1 %e A362022 8 17 1000|1 %e A362022 9 15 11|11 %e A362022 10 21 1010|1 %e A362022 11 23 1011|1 %e A362022 12 19 100|11 %e A362022 13 27 1101|1 %e A362022 14 23 10|111 %e A362022 15 23 101|11 %t A362022 Table[Min@ Map[FromDigits[Join @@ #, 2] &, Join @@ {#, Reverse /@ #}] &@ Map[IntegerDigits[#, 2] &, Transpose@{#, n/#}, {2}] &@ TakeWhile[Divisors[n], # <= Sqrt[n] &], {n, 60}] (* _Michael De Vlieger_, Apr 07 2023 *) %o A362022 (PARI) a(n, base = 2) = { my (v = oo); fordiv (n, d, v = min(v, n/d * base^#digits(d, base) + d);); return (v); } %o A362022 (Python) %o A362022 from sympy import divisors %o A362022 def a(n): return min(d+((n//d)<<d.bit_length()) for d in divisors(n)) %o A362022 print([a(n) for n in range(1, 66)]) # _Michael S. Branicky_, Apr 05 2023 %Y A362022 Cf. A070939, A163621, A362023 (decimal variant). %K A362022 nonn,base %O A362022 1,1 %A A362022 _Rémy Sigrist_, Apr 05 2023