This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362023 #13 Apr 07 2023 10:51:34 %S A362023 11,12,13,14,15,16,17,18,19,25,111,26,113,27,35,28,117,29,119,45,37, %T A362023 112,123,38,55,126,39,47,129,56,131,48,113,134,57,49,137,138,133,58, %U A362023 141,67,143,114,59,146,147,68,77,105,151,134,153,69,115,78,157,158 %N A362023 a(n) is the least positive integer whose decimal expansion is the concatenation of the decimal expansions of two numbers whose product is n. %C A362023 For any prime number p, a(p) is the least of the concatenation of p with 1 or the concatenation of 1 with p. %H A362023 Michael De Vlieger, <a href="/A362023/b362023.txt">Table of n, a(n) for n = 1..10000</a> %F A362023 a(n) <= 10*n + 1. %F A362023 a(n) <= 10^A055642(n) + n. %F A362023 a(n) = Min_{d | n} A067574(n/d, d). %e A362023 The first terms, alongside an appropriate way to split them into two factors, are: %e A362023 n a(n) a(n) %e A362023 -- ---- ---- %e A362023 1 11 1*1 %e A362023 2 12 1*2 %e A362023 3 13 1*3 %e A362023 4 14 1*4 %e A362023 5 15 1*5 %e A362023 6 16 1*6 %e A362023 7 17 1*7 %e A362023 8 18 1*8 %e A362023 9 19 1*9 %e A362023 10 25 2*5 %e A362023 11 111 11*1 %e A362023 12 26 2*6 %e A362023 13 113 1*13 %e A362023 14 27 2*7 %e A362023 15 35 3*5 %t A362023 Table[Min@ Map[FromDigits[Join @@ #] &, Join @@ {#, Reverse /@ #}] &@ Map[IntegerDigits[#] &, Transpose@{#, n/#}, {2}] &@ TakeWhile[Divisors[n], # <= Sqrt[n] &], {n, 60}] (* _Michael De Vlieger_, Apr 07 2023 *) %o A362023 (PARI) a(n, base = 10) = { my (v = oo); fordiv (n, d, v = min(v, n/d * base^#digits(d, base) + d);); return (v); } %o A362023 (Python) %o A362023 from sympy import divisors %o A362023 def a(n): return min(int(str(d)+str(n//d)) for d in divisors(n)) %o A362023 print([a(n) for n in range(1, 61)]) # _Michael S. Branicky_, Apr 05 2023 %Y A362023 Cf. A055642, A067574, A347471, A362022 (binary variant). %K A362023 nonn,base %O A362023 1,1 %A A362023 _Rémy Sigrist_, Apr 05 2023