cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362023 a(n) is the least positive integer whose decimal expansion is the concatenation of the decimal expansions of two numbers whose product is n.

This page as a plain text file.
%I A362023 #13 Apr 07 2023 10:51:34
%S A362023 11,12,13,14,15,16,17,18,19,25,111,26,113,27,35,28,117,29,119,45,37,
%T A362023 112,123,38,55,126,39,47,129,56,131,48,113,134,57,49,137,138,133,58,
%U A362023 141,67,143,114,59,146,147,68,77,105,151,134,153,69,115,78,157,158
%N A362023 a(n) is the least positive integer whose decimal expansion is the concatenation of the decimal expansions of two numbers whose product is n.
%C A362023 For any prime number p, a(p) is the least of the concatenation of p with 1 or the concatenation of 1 with p.
%H A362023 Michael De Vlieger, <a href="/A362023/b362023.txt">Table of n, a(n) for n = 1..10000</a>
%F A362023 a(n) <= 10*n + 1.
%F A362023 a(n) <= 10^A055642(n) + n.
%F A362023 a(n) = Min_{d | n} A067574(n/d, d).
%e A362023 The first terms, alongside an appropriate way to split them into two factors, are:
%e A362023   n   a(n)  a(n)
%e A362023   --  ----  ----
%e A362023    1    11   1*1
%e A362023    2    12   1*2
%e A362023    3    13   1*3
%e A362023    4    14   1*4
%e A362023    5    15   1*5
%e A362023    6    16   1*6
%e A362023    7    17   1*7
%e A362023    8    18   1*8
%e A362023    9    19   1*9
%e A362023   10    25   2*5
%e A362023   11   111  11*1
%e A362023   12    26   2*6
%e A362023   13   113  1*13
%e A362023   14    27   2*7
%e A362023   15    35   3*5
%t A362023 Table[Min@ Map[FromDigits[Join @@ #] &, Join @@ {#, Reverse /@ #}] &@ Map[IntegerDigits[#] &, Transpose@{#, n/#}, {2}] &@ TakeWhile[Divisors[n], # <= Sqrt[n] &], {n, 60}] (* _Michael De Vlieger_, Apr 07 2023 *)
%o A362023 (PARI) a(n, base = 10) = { my (v = oo); fordiv (n, d, v = min(v, n/d * base^#digits(d, base) + d);); return (v); }
%o A362023 (Python)
%o A362023 from sympy import divisors
%o A362023 def a(n): return min(int(str(d)+str(n//d)) for d in divisors(n))
%o A362023 print([a(n) for n in range(1, 61)]) # _Michael S. Branicky_, Apr 05 2023
%Y A362023 Cf. A055642, A067574, A347471, A362022 (binary variant).
%K A362023 nonn,base
%O A362023 1,1
%A A362023 _Rémy Sigrist_, Apr 05 2023