A362025 a(n) is the least number that reaches 1 after n iterations of the infinitary totient function A064380.
2, 3, 4, 5, 9, 11, 16, 17, 28, 29, 46, 47, 99, 145, 167, 205, 314, 397, 437, 793, 851, 1137, 1693, 2453, 2771, 2989, 3701, 5099, 6801, 9299, 12031, 15811, 16816, 21520, 21521, 29547, 39685, 62077, 83191, 103473, 112117, 149535, 157159, 196049, 200267, 303022
Offset: 1
Keywords
Programs
-
Mathematica
infCoprimeQ[n1_, n2_] := Module[{g = GCD[n1, n2]}, If[g == 1, True, AllTrue[FactorInteger[g][[;; , 1]], BitAnd @@ IntegerExponent[{n1, n2}, #] == 0 &]]]; iphi[n_] := Sum[Boole[infCoprimeQ[j, n]], {j, 1, n - 1}]; numiter[n_] := Length@ NestWhileList[iphi, n, # > 1 &] - 1; seq[kmax_] := Module[{v = {}, n = 1}, Do[If[numiter[k] == n, AppendTo[v, k]; n++], {k, 2, kmax}]; v]; seq[1000]
-
PARI
isinfcoprime(n1, n2) = {my(g = gcd(n1, n2), p, e1, e2); if(g == 1, return(1)); p = factor(g)[, 1]; for(i=1, #p, e1 = valuation(n1, p[i]); e2 = valuation(n2, p[i]); if(bitand(e1, e2) > 0, return(0))); 1; } iphi(n) = sum(j = 1, n-1, isinfcoprime(j, n)); numiter(n) = if(n==2, 1, numiter(iphi(n)) + 1); lista(kmax) = {my(n = 1); for(k = 2, kmax, if(numiter(k) == n, print1(k, ", "); n++)); }