This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362034 #46 Apr 15 2025 18:29:40 %S A362034 2,2,2,2,5,2,2,7,7,2,2,11,17,11,2,2,13,29,29,13,2,2,17,43,59,43,17,2, %T A362034 2,19,61,103,103,61,19,2,2,23,83,167,211,167,83,23,2,2,29,107,251,379, %U A362034 379,251,107,29,2,2,31,137,359,631,761,631,359,137,31,2 %N A362034 Triangle read by rows: T(n,0) = T(n,n) = 2, 0 < k < n: T(n,k) = smallest prime not less than T(n-1,k) + T(n-1,k-1). %C A362034 In order to get the next number in the row, you add the two numbers above it, and find the next prime. %C A362034 3 is the only prime number that never shows up. %C A362034 5 is the only prime number that only shows up once; every prime number above 5 shows up at least twice. %H A362034 Michael De Vlieger, <a href="/A362034/b362034.txt">Table of n, a(n) for n = 0..11475</a> (rows 0..150, flattened) %F A362034 T(n,k) = A007918(T(n-1,k-1) + T(n-1,k)) for 0 < k < n. - _Robert Israel_, Apr 05 2023 %e A362034 Triangle begins: %e A362034 k=0 1 2 3 4 5 6 7 8 9 10 %e A362034 n=0: 2 %e A362034 n=1: 2 2 %e A362034 n=2: 2 5 2 %e A362034 n=3: 2 7 7 2 %e A362034 n=4: 2 11 17 11 2 %e A362034 n=5: 2 13 29 29 13 2 %e A362034 n=6: 2 17 43 59 43 17 2 %e A362034 n=7: 2 19 61 103 103 61 19 2 %e A362034 n=8: 2 23 83 167 211 167 83 23 2 %e A362034 n=9: 2 29 107 251 379 379 251 107 29 2 %e A362034 n=10: 2 31 137 359 631 761 631 359 137 31 2 %p A362034 for n from 0 to 10 do %p A362034 T[n,0]:= 2: T[n,n]:= 2: %p A362034 for k from 1 to n-1 do %p A362034 T[n,k]:= nextprime(T[n-1,k-1]+T[n-1,k]-1) %p A362034 od %p A362034 od: %p A362034 for n from 0 to 10 do %p A362034 seq(T[n,k],k=0..n) %p A362034 od; # _Robert Israel_, Apr 05 2023 %t A362034 T[n_, 0] := T[n, n] = 2; T[n_, k_] := T[n, k] = NextPrime[T[n - 1, k - 1] + T[n - 1, k] - 1]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Apr 06 2023, after Maple *) %o A362034 (PARI) T(n,k) = if (n==0, 2, if (k==0, 2, if (k==n, 2, nextprime(T(n-1,k-1) + T(n-1,k))))); \\ _Michel Marcus_, Apr 07 2023 %Y A362034 Cf. A000040, A007318, A132403, A199333. %K A362034 nonn,tabl %O A362034 0,1 %A A362034 _Jack Braxton_, Apr 05 2023