cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362036 The prime indices of A362034.

This page as a plain text file.
%I A362036 #30 Jun 21 2025 00:45:14
%S A362036 1,1,1,1,3,1,1,4,4,1,1,5,7,5,1,1,6,10,10,6,1,1,7,14,17,14,7,1,1,8,18,
%T A362036 27,27,18,8,1,1,9,23,39,47,39,23,9,1,1,10,28,54,75,75,54,28,10,1,1,11,
%U A362036 33,72,115,135,115,72,33,11,1,1,12,40,95,167,222,222,167,95,40,12,1
%N A362036 The prime indices of A362034.
%F A362036 T(n,k) = A000720(A362034(n,k)).
%e A362036 Triangle begins:
%e A362036       k=0  1  2  3  4
%e A362036   n=0:  1;
%e A362036   n=1:  1, 1;
%e A362036   n=2:  1, 3, 1;
%e A362036   n=3:  1, 4, 4, 1;
%e A362036   n=4:  1, 5, 7, 5, 1;
%e A362036   n=5:  ...
%t A362036 T[n_, 0] := T[n, n] = 2; T[n_, k_] := T[n, k] = NextPrime[T[n - 1, k - 1] + T[n - 1, k] - 1]; Table[PrimePi@ T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Apr 06 2023 *)
%o A362036 (PARI) t(n,k) = if (n==0, 2, if (k==0, 2, if (k==n, 2, nextprime(t(n-1,k-1) + t(n-1,k))))); \\ A362034
%o A362036 T(n,k) = primepi(t(n,k)); \\ _Michel Marcus_, Apr 07 2023
%Y A362036 Cf. A000720, A362034.
%K A362036 nonn,tabl
%O A362036 0,5
%A A362036 _Jack Braxton_, Apr 05 2023