This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362036 #30 Jun 21 2025 00:45:14 %S A362036 1,1,1,1,3,1,1,4,4,1,1,5,7,5,1,1,6,10,10,6,1,1,7,14,17,14,7,1,1,8,18, %T A362036 27,27,18,8,1,1,9,23,39,47,39,23,9,1,1,10,28,54,75,75,54,28,10,1,1,11, %U A362036 33,72,115,135,115,72,33,11,1,1,12,40,95,167,222,222,167,95,40,12,1 %N A362036 The prime indices of A362034. %F A362036 T(n,k) = A000720(A362034(n,k)). %e A362036 Triangle begins: %e A362036 k=0 1 2 3 4 %e A362036 n=0: 1; %e A362036 n=1: 1, 1; %e A362036 n=2: 1, 3, 1; %e A362036 n=3: 1, 4, 4, 1; %e A362036 n=4: 1, 5, 7, 5, 1; %e A362036 n=5: ... %t A362036 T[n_, 0] := T[n, n] = 2; T[n_, k_] := T[n, k] = NextPrime[T[n - 1, k - 1] + T[n - 1, k] - 1]; Table[PrimePi@ T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Apr 06 2023 *) %o A362036 (PARI) t(n,k) = if (n==0, 2, if (k==0, 2, if (k==n, 2, nextprime(t(n-1,k-1) + t(n-1,k))))); \\ A362034 %o A362036 T(n,k) = primepi(t(n,k)); \\ _Michel Marcus_, Apr 07 2023 %Y A362036 Cf. A000720, A362034. %K A362036 nonn,tabl %O A362036 0,5 %A A362036 _Jack Braxton_, Apr 05 2023