A362044 a(n) = largest k such that k < m^2 and rad(k) | m, where rad(k) = A007947(k) and m = A120944(n).
32, 80, 128, 135, 343, 352, 512, 864, 891, 1088, 875, 1216, 1053, 1728, 2048, 2187, 1375, 2187, 2048, 2048, 3125, 4224, 2187, 4802, 4736, 3773, 5832, 5248, 4913, 5504, 7047, 4459, 7533, 8192, 6859, 10368, 10935, 8192, 11264, 8991, 12312, 12167, 8192, 5831, 8192, 9963, 10449, 16640, 16807, 17152, 18432
Offset: 1
Keywords
Examples
a(1) = 32 since m = 6 and the largest k < m^2 such that rad(k) | 6 is 32. This is to say, the number that precedes 6^2 in A003586 is 32. a(2) = 80 since m = 10 and the largest k < m^2 such that rad(k) | 10 is 80. This is to say, the number that precedes 10^2 in A003592 is 80. Table of n = 1..12, m = A120944(n), a(n), and m^2. n m a(n) m^2 --------------------- 1 6 32 36 2 10 80 100 3 14 128 196 4 15 135 225 5 21 343 441 6 22 352 484 7 26 512 676 8 30 864 900 9 33 891 1089 10 34 1088 1156 11 35 875 1225 12 38 1216 1444
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Scatterplot of a(n), m^2, and b(n), n = 1..2^14, where b(n) = A362045(n) is shown in red, m^2 in black, and a(n) in blue.
Programs
-
Mathematica
Table[m = k^2 - 1; While[! Divisible[k, Times @@ FactorInteger[m][[All, 1]]], m--]; m, {k, Select[Range[6, 133], And[CompositeQ[#], SquareFreeQ[#]] &]}]
Comments