This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362045 #8 Apr 19 2023 19:00:38 %S A362045 48,125,224,243,567,512,832,960,1331,2048,1715,2048,2187,1792,2944, %T A362045 4131,3125,4617,3712,3968,8125,4374,5589,5000,8192,9317,6144,8192, %U A362045 10625,8192,19683,15379,19683,12032,11875,11016,11907,13568,12500,19683,13122,14375,15104,16807,15616,19683,19683,17576,45619 %N A362045 a(n) = smallest k such that k > m^2 and rad(k) | m, where rad(k) = A007947(k) and m = A120944(n). %C A362045 The smallest k such that k > p^2 such that p is prime and rad(k) | p is p^3. %H A362045 Michael De Vlieger, <a href="/A362045/b362045.txt">Table of n, a(n) for n = 1..32768</a> %H A362045 Michael De Vlieger, <a href="/A362045/a362045.png">Scatterplot of a(n), m^2, and b(n)</a>, n = 1..2^14, where b(n) = A362044(n) is shown in blue, m^2 in black, and a(n) in red. %e A362045 a(1) = 48 since m = 6 and the smallest k > m^2 such that rad(k) | 6 is 48. This is to say, the number that follows 6^2 in A003586 is 48. %e A362045 a(2) = 80 since m = 10 and the smallest k > m^2 such that rad(k) | 10 is 125. This is to say, the number that precedes 10^2 in A003592 is 125. %e A362045 Table of n = 1..12, m = A120944(n), m^2, and a(n). %e A362045 n m m^2 a(n) %e A362045 --------------------- %e A362045 1 6 36 48 %e A362045 2 10 100 125 %e A362045 3 14 196 224 %e A362045 4 15 225 243 %e A362045 5 21 441 567 %e A362045 6 22 484 512 %e A362045 7 26 676 832 %e A362045 8 30 900 960 %e A362045 9 33 1089 1331 %e A362045 10 34 1156 2048 %e A362045 11 35 1225 1715 %e A362045 12 38 1444 2048 %t A362045 Table[m = k^2 + 1; While[! Divisible[k, Times @@ FactorInteger[m][[All, 1]]], m++]; m, {k, Select[Range[6, 133], And[CompositeQ[#], SquareFreeQ[#]] &]}] %Y A362045 Cf. A007947, A120944, A289280, A362044. %K A362045 nonn %O A362045 1,1 %A A362045 _Michael De Vlieger_, Apr 05 2023