This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362047 #12 Apr 14 2023 02:13:12 %S A362047 10,30,39,90,98,99,100,115,259,270,273,300,490,495,517,663,665,793, %T A362047 810,900,1000,1083,1241,1421,1495,1521,1691,1911,2058,2079,2125,2145, %U A362047 2369,2430,2450,2475,2662,2700,2755,2821,3000,3277,4247,4495,4921,5587,5863,6069 %N A362047 Numbers whose prime indices satisfy: (maximum) - (minimum) = (mean). %C A362047 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %F A362047 A359360(a(n)) = A326844(a(n)). %F A362047 A243055(a(n)) = A061395(a(n)) - A055396(a(n)) %F A362047 = A326567(a(n))/A326568(a(n)) %F A362047 = A056239(a(n))/A001222(a(n)). %e A362047 The terms together with their prime indices begin: %e A362047 10: {1,3} %e A362047 30: {1,2,3} %e A362047 39: {2,6} %e A362047 90: {1,2,2,3} %e A362047 98: {1,4,4} %e A362047 99: {2,2,5} %e A362047 100: {1,1,3,3} %e A362047 115: {3,9} %e A362047 259: {4,12} %e A362047 270: {1,2,2,2,3} %e A362047 273: {2,4,6} %e A362047 300: {1,1,2,3,3} %e A362047 The prime indices of 490 are {1,3,4,4}, with minimum 1, maximum 4, and mean 3, and 4-1 = 3, so 490 is in the sequence. %t A362047 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A362047 Select[Range[100],Max@@prix[#]-Min@@prix[#]==Mean[prix[#]]&] %o A362047 (Python) %o A362047 from itertools import count, islice %o A362047 from sympy import primepi, factorint %o A362047 def A362047_gen(startvalue=2): # generator of terms >= startvalue %o A362047 return filter(lambda n:(primepi(max(f:=factorint(n)))-primepi(min(f)))*sum(f.values())==sum(primepi(i)*j for i, j in f.items()),count(max(startvalue,2))) %o A362047 A362047_list = list(islice(A362047_gen(),20)) # _Chai Wah Wu_, Apr 13 2023 %Y A362047 Partitions of this type are counted by A361862. %Y A362047 For minimum instead of mean we have A361908, counted by A118096. %Y A362047 A055396 gives minimum prime index, A061395 maximum. %Y A362047 A112798 list prime indices, length A001222, sum A056239. %Y A362047 A243055 subtracts the least prime index from the greatest. %Y A362047 A326844 gives the diagram complement size of Heinz partition. %Y A362047 Cf. A111907, A237832, A268192, A316413, A326836, A326837, A326846, A359358, A359360, A361855. %K A362047 nonn %O A362047 1,1 %A A362047 _Gus Wiseman_, Apr 11 2023