cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362049 Number of integer partitions of n such that (length) = 2*(median).

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 1, 3, 3, 3, 3, 3, 3, 4, 5, 9, 12, 19, 22, 29, 32, 39, 43, 51, 57, 70, 81, 101, 123, 153, 185, 230, 272, 328, 386, 454, 526, 617, 708, 824, 951, 1106, 1277, 1493, 1727, 2020, 2344, 2733, 3164, 3684, 4245, 4914, 5647, 6502, 7438, 8533, 9730
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). All of these partitions have even length, because an odd-length multiset cannot have fractional median.

Examples

			The a(13) = 3 through a(15) = 5 partitions:
  (7,2,2,2)  (8,2,2,2)      (9,2,2,2)
  (8,2,2,1)  (9,2,2,1)      (10,2,2,1)
  (8,3,1,1)  (9,3,1,1)      (10,3,1,1)
             (3,3,3,3,1,1)  (3,3,3,3,2,1)
                            (4,3,3,3,1,1)
		

Crossrefs

For maximum instead of median we have A237753.
For minimum instead of median we have A237757.
For maximum instead of length we have A361849, ranks A361856.
This is the equal case of A362048.
These partitions have ranks A362050.
A000041 counts integer partitions, strict A000009.
A000975 counts subsets with integer median.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]==2*Median[#]&]],{n,30}]