A362049
Number of integer partitions of n such that (length) = 2*(median).
Original entry on oeis.org
0, 1, 0, 0, 0, 0, 1, 3, 3, 3, 3, 3, 3, 4, 5, 9, 12, 19, 22, 29, 32, 39, 43, 51, 57, 70, 81, 101, 123, 153, 185, 230, 272, 328, 386, 454, 526, 617, 708, 824, 951, 1106, 1277, 1493, 1727, 2020, 2344, 2733, 3164, 3684, 4245, 4914, 5647, 6502, 7438, 8533, 9730
Offset: 1
The a(13) = 3 through a(15) = 5 partitions:
(7,2,2,2) (8,2,2,2) (9,2,2,2)
(8,2,2,1) (9,2,2,1) (10,2,2,1)
(8,3,1,1) (9,3,1,1) (10,3,1,1)
(3,3,3,3,1,1) (3,3,3,3,2,1)
(4,3,3,3,1,1)
For maximum instead of median we have
A237753.
For minimum instead of median we have
A237757.
These partitions have ranks
A362050.
A000975 counts subsets with integer median.
A361800
Number of integer partitions of n with the same length as median.
Original entry on oeis.org
1, 0, 0, 2, 0, 0, 1, 2, 3, 3, 3, 3, 4, 6, 9, 13, 14, 15, 18, 21, 27, 32, 40, 46, 55, 62, 72, 82, 95, 111, 131, 157, 186, 225, 264, 316, 366, 430, 495, 578, 663, 768, 880, 1011, 1151, 1316, 1489, 1690, 1910, 2158, 2432, 2751, 3100, 3505, 3964, 4486, 5079, 5764
Offset: 1
The a(1) = 1 through a(15) = 9 partitions (A=10, B=11):
1 . . 22 . . 331 332 333 433 533 633 733 833 933
31 431 432 532 632 732 832 932 A32
531 631 731 831 931 A31 B31
4441 4442 4443
5441 5442
5531 5532
6441
6531
6621
For minimum instead of median we have
A006141, for twice minimum
A237757.
For maximum instead of median we have
A047993, for twice length
A237753.
For maximum instead of length we have
A053263, for twice median
A361849.
For mean instead of median we have
A206240 (zeros removed).
For minimum instead of length we have
A361860.
A000975 counts subsets with integer median.
A360005 gives twice median of prime indices.
A363134
Positive integers whose multiset of prime indices satisfies: (length) = 2*(minimum).
Original entry on oeis.org
4, 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 81, 82, 86, 94, 106, 118, 122, 134, 135, 142, 146, 158, 166, 178, 189, 194, 202, 206, 214, 218, 225, 226, 254, 262, 274, 278, 297, 298, 302, 314, 315, 326, 334, 346, 351, 358, 362, 375, 382, 386, 394, 398, 422, 441
Offset: 1
The terms together with their prime indices begin:
4: {1,1} 94: {1,15} 214: {1,28}
6: {1,2} 106: {1,16} 218: {1,29}
10: {1,3} 118: {1,17} 225: {2,2,3,3}
14: {1,4} 122: {1,18} 226: {1,30}
22: {1,5} 134: {1,19} 254: {1,31}
26: {1,6} 135: {2,2,2,3} 262: {1,32}
34: {1,7} 142: {1,20} 274: {1,33}
38: {1,8} 146: {1,21} 278: {1,34}
46: {1,9} 158: {1,22} 297: {2,2,2,5}
58: {1,10} 166: {1,23} 298: {1,35}
62: {1,11} 178: {1,24} 302: {1,36}
74: {1,12} 189: {2,2,2,4} 314: {1,37}
81: {2,2,2,2} 194: {1,25} 315: {2,2,3,4}
82: {1,13} 202: {1,26} 326: {1,38}
86: {1,14} 206: {1,27} 334: {1,39}
Partitions of this type are counted by
A237757.
Removing the factor 2 gives
A324522.
A360005 gives twice median of prime indices.
Cf.
A000961,
A006141,
A046660,
A051293,
A106529,
A111907,
A237755,
A237824,
A327482,
A361860,
A361861,
A362050.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Length[prix[#]]==2*Min[prix[#]]&]
A363133
Numbers > 1 whose prime indices satisfy 2*(minimum) = (mean).
Original entry on oeis.org
10, 28, 30, 39, 84, 88, 90, 100, 115, 171, 208, 252, 255, 259, 264, 270, 273, 280, 300, 363, 517, 544, 624, 756, 783, 784, 792, 793, 810, 840, 880, 900, 925, 1000, 1035, 1085, 1197, 1216, 1241, 1425, 1495, 1521, 1595, 1615, 1632, 1683, 1691, 1785, 1872, 1911
Offset: 1
The terms together with their prime indices begin:
10: {1,3}
28: {1,1,4}
30: {1,2,3}
39: {2,6}
84: {1,1,2,4}
88: {1,1,1,5}
90: {1,2,2,3}
100: {1,1,3,3}
115: {3,9}
171: {2,2,8}
208: {1,1,1,1,6}
252: {1,1,2,2,4}
255: {2,3,7}
259: {4,12}
264: {1,1,1,2,5}
Removing the factor 2 gives
A000961.
Partitions of this type are counted by
A363132.
A051293 counts subsets with integer mean.
A360005 gives twice median of prime indices.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Mean[prix[#]]==2*Min[prix[#]]&]
A363223
Numbers with bigomega equal to median prime index.
Original entry on oeis.org
2, 9, 10, 50, 70, 75, 105, 110, 125, 130, 165, 170, 175, 190, 195, 230, 255, 275, 285, 290, 310, 325, 345, 370, 410, 425, 430, 435, 465, 470, 475, 530, 555, 575, 590, 610, 615, 645, 670, 686, 705, 710, 725, 730, 775, 790, 795, 830, 885, 890, 915, 925, 970
Offset: 1
The terms together with their prime indices begin:
2: {1}
9: {2,2}
10: {1,3}
50: {1,3,3}
70: {1,3,4}
75: {2,3,3}
105: {2,3,4}
110: {1,3,5}
125: {3,3,3}
130: {1,3,6}
165: {2,3,5}
170: {1,3,7}
175: {3,3,4}
Partitions of this type are counted by
A361800.
A000975 counts subsets with integer median.
A359908 lists numbers whose prime indices have integer median.
A360005 gives twice median of prime indices.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],PrimeOmega[#]==Median[prix[#]]&]
Showing 1-5 of 5 results.
Comments