A362052 Practical numbers (A005153) that are abundant and have a record low value of abundancy index.
12, 18, 20, 88, 104, 464, 1888, 1952, 29056, 29312, 29824, 30592, 30848, 32128, 127744, 128768, 130304, 521728, 522752, 8341504, 8353792, 8378368, 8382464, 134029312, 134045696, 134094848, 134193152, 2146926592, 2146992128, 8586723328, 8587902976, 8589082624
Offset: 1
Keywords
Examples
The abundancy indices of the first terms are 7/3 > 13/6 > 21/10 > 45/22 > 105/52 > 465/232 > 945/472 > ... > 2.
Links
- Wikipedia, Practical number.
Crossrefs
Programs
-
Mathematica
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@ fct]), _?(# > 1 &)] == {}; seq = {}; rm = 3; Do[fct = FactorInteger[n]; r = Times @@ (((First /@ fct)^(1 + Last /@ fct) - 1)/(First /@ fct - 1))/n; If[2 < r < rm && pracQ[fct], rm = r; AppendTo[seq, n]], {n, 3, 10^6}]; seq
-
PARI
lista(kmax) = {my(f, r, rm = 3, prd, prac); forstep(k = 2, kmax, 2, f = factor(k); r = sigma(f, -1); if(r > 2 && r < rm, prd = 1; prac = 1; for(i=2, #f~, prd *= sigma(f[i-1, 1]^f[i-1, 2]); if(f[i, 1] > 1 + prd, prac = 0; break)); if(prac, rm = r; print1(k, ", ")))); }
Comments