A362053 Primitive abundant numbers k (A071395) whose abundancy index sigma(k)/k has a record low value.
20, 70, 88, 104, 464, 650, 1888, 1952, 4030, 5830, 8925, 17816, 32128, 77744, 91388, 128768, 130304, 442365, 521728, 522752, 1848964, 8353792, 8378368, 8382464, 35021696, 45335936, 120888092, 134193152, 775397948, 1845991216, 2146926592, 2146992128, 3381872252
Offset: 1
Keywords
Examples
The abundancy indices of the first terms are 21/10 > 72/35 > 45/22 > 105/52 > 465/232 > 651/325 > 945/472 > ... > 2.
Crossrefs
Programs
-
Mathematica
f1[p_, e_] := (p^(e + 1) - 1)/(p^(e + 1) - p^e); f2[p_, e_] := (p^(e + 1) - p)/(p^(e + 1) - 1); (* Returns the abundancy index of n if n is primitive abundant, and 0 otherwise: *) abIndex[n_] := If[(r = Times @@ f1 @@@ (f = FactorInteger[n])) > 2 && r * Max @@ f2 @@@ f < 2, r, 0]; abIndex[1] = 0; seq[kmax_] := Module[{s = {}, ab, abm = 3}, Do[If[0 < (ab = abIndex[k]) < abm, abm = ab; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^6]
-
PARI
abindex(n) = {my(f = factor(n), r, p, e); r = sigma(f, -1); if(r <= 2, return(0)); if(vecmax(vector(#f~, i, p = f[i, 1]; e = f[i, 2]; (p^(e + 1) - p)/(p^(e + 1) - 1))) * r < 2, r, 0);} \\ Returns the abundancy index of n if n is primitive abundant, and 0 otherwise. lista(kmax) = {my(ab, abm = 3); for(k = 1, kmax, ab = abindex(k); if(ab > 0 && ab < abm, abm = ab; print1(k, ", "))); }
Comments