cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362053 Primitive abundant numbers k (A071395) whose abundancy index sigma(k)/k has a record low value.

Original entry on oeis.org

20, 70, 88, 104, 464, 650, 1888, 1952, 4030, 5830, 8925, 17816, 32128, 77744, 91388, 128768, 130304, 442365, 521728, 522752, 1848964, 8353792, 8378368, 8382464, 35021696, 45335936, 120888092, 134193152, 775397948, 1845991216, 2146926592, 2146992128, 3381872252
Offset: 1

Views

Author

Amiram Eldar, Apr 06 2023

Keywords

Comments

The abundancy index of an integer k is sigma(k)/k, where sigma is the sum-of-divisors function (A000203).
Terms k of A071395 such that sigma(k)/k < sigma(m)/m for all smaller terms m < k of A071395.

Examples

			The abundancy indices of the first terms are 21/10 > 72/35 > 45/22 > 105/52 > 465/232 > 651/325 > 945/472 > ... > 2.
		

Crossrefs

Other sequences related to records in A071395: A083873, A334419.

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p^(e + 1) - p^e); f2[p_, e_] := (p^(e + 1) - p)/(p^(e + 1) - 1);
    (* Returns the abundancy index of n if n is primitive abundant, and 0 otherwise: *)
    abIndex[n_] := If[(r = Times @@ f1 @@@ (f = FactorInteger[n])) > 2 && r * Max @@ f2 @@@ f < 2, r, 0]; abIndex[1] = 0;
    seq[kmax_] := Module[{s = {}, ab, abm = 3}, Do[If[0 < (ab = abIndex[k]) < abm, abm = ab; AppendTo[s, k]], {k, 1,  kmax}]; s]; seq[10^6]
  • PARI
    abindex(n) = {my(f = factor(n), r, p, e); r = sigma(f, -1); if(r <= 2, return(0)); if(vecmax(vector(#f~, i, p = f[i, 1]; e = f[i, 2]; (p^(e + 1) - p)/(p^(e + 1) - 1))) * r < 2, r, 0);} \\ Returns the abundancy index of n if n is primitive abundant, and 0 otherwise.
    lista(kmax) = {my(ab, abm = 3); for(k = 1, kmax, ab = abindex(k); if(ab > 0 && ab < abm, abm = ab; print1(k, ", "))); }