This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362060 #35 Apr 08 2023 11:07:11 %S A362060 7,1491,1723,4437,5789,5893,6151,6331,6347,6455,6456,6457,6459,6460, %T A362060 6466,6469,6491,6501,6513,6523,6581,6663,6931,7817,9551,12083,15103, %U A362060 23071,24833,107647,115259,303027,440999,968819,5517973,27737957,93230839,95929941,96567161 %N A362060 Numbers k such that the digits of k are a subsequence of the digits of prime(k). %H A362060 Chai Wah Wu, <a href="/A362060/b362060.txt">Table of n, a(n) for n = 1..54</a> %e A362060 a(1) = 7 is a term because the digits of 7 form a subsequence of those of prime(7) = 17. %o A362060 (Python) %o A362060 from sympy import sieve %o A362060 def ok(n): %o A362060 p = sieve[n] %o A362060 while n and p: %o A362060 if n%10 == p%10: %o A362060 n //= 10 %o A362060 p //= 10 %o A362060 return n == 0 %o A362060 print([k for k in range(1, 10**6) if ok(k)]) # _Michael S. Branicky_, Apr 06 2023 %o A362060 (Python) %o A362060 from sympy import prime, nextprime %o A362060 from itertools import count, islice %o A362060 def A362060_gen(startvalue=1): # generator of terms >= startvalue %o A362060 p = prime(max(startvalue,1)) %o A362060 for k in count(max(startvalue,1)): %o A362060 c = iter(str(p)) %o A362060 if all(map(lambda b:any(map(lambda a:a==b,c)),str(k))): %o A362060 yield k %o A362060 p = nextprime(p) %o A362060 A362060_list = list(islice(A362060_gen(),20)) # _Chai Wah Wu_, Apr 07 2023 %Y A362060 Cf. A000040, A133583, A133589, A362066. %K A362060 nonn,base %O A362060 1,1 %A A362060 _Jean-Marc Rebert_, Apr 06 2023 %E A362060 a(36)-a(39) from _Michael S. Branicky_, Apr 06 2023