A362068 a(n) is the smallest positive integer k such that n can be expressed as the arithmetic mean of k squares.
1, 2, 3, 1, 2, 3, 3, 2, 1, 2, 3, 3, 2, 3, 3, 1, 2, 2, 3, 2, 4, 3, 3, 3, 1, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 1, 2, 3, 3, 2, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 2, 3, 3, 1, 2, 3, 3, 2, 4, 3, 3, 2, 2, 2, 3, 3, 4, 3, 3, 2, 1, 2, 3, 4, 2, 3, 3, 3, 2, 2, 3, 3, 4, 3, 3, 3, 2, 2, 3, 1
Offset: 1
Examples
For n = 2, if k = 1, 2*1 = 2 is not a square; if k = 2, 2*2 = 4 = 2^2 + 0^2, so a(2) = 2.
Links
- Peter Munn, Table of n, a(n) for n = 1..10000
Programs
-
PARI
findsquare(k, m) = if(k == 1, issquare(m), for(j=0, m, if(j*j > m, return(0), if(findsquare(k-1, m-j*j), return(1))))); a(n) = {for(t = 1, 3, if(findsquare(t, n*t), return(t))); return(4)};
-
Python
from sympy.ntheory.primetest import is_square from sympy import factorint def A362068(n): if is_square(n): return 1 if all(map(lambda x:x[0]&3<3 or x[1]&1^1, factorint(k:=n>>(m:=(~n&n-1).bit_length())).items())): return 2 if m&1 or 3*k&7<7: return 3 return 4 # Chai Wah Wu, Apr 27 2023
Formula
a(n) <= 4. (Lagrange)
Comments