cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362071 a(1) = 1, and thereafter a(n) is the number of terms with index m < n such that gpf(a(m)) = gpf(a(n-1)), where gpf(k) = A006530(k) is the greatest prime factor of k (or 1 if k=1).

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 2, 3, 2, 4, 5, 1, 5, 2, 6, 3, 4, 7, 1, 6, 5, 3, 6, 7, 2, 8, 9, 8, 10, 4, 11, 1, 7, 3, 9, 10, 5, 6, 11, 2, 12, 12, 13, 1, 8, 13, 2, 14, 4, 15, 7, 5, 8, 16, 17, 1, 9, 14, 6, 15, 9, 16, 18, 17, 2, 19, 1, 10, 10, 11, 3, 18, 19, 2
Offset: 1

Views

Author

Florian Baur, Apr 08 2023

Keywords

Comments

As the sequence consists of terms that are a count of preceding terms, it is unbounded and its record highs are successive integers. Since a new count begins for every term whose gpf was not in the sequence before, every integer is in the sequence infinitely often.
Choosing a(1) = m != 1 will result in an identical sequence with an offset of 1 until the first occurrence of gpf(m) in the sequence. In the original sequence the next term is 1, whereas in the modified sequence it is 2.
A trivial upper bound is a(n) < n. Is there a tighter bound? The terms are expected to grow with n as the density of primes not yet in the sequence decreases and with it the density of terms equal to 1.

Examples

			a(3) = 2, because gpf(a(2)) = 1 and there are 2 terms where index m < 3 and gpf(a(m)) = 1, i.e., a(1) and a(2).
a(12) = 5 because gpf(a(11)) = 2 and there are 5 terms where index m < 12 and gpf(a(m)) = 2, i.e., a(3), a(7), a(8), a(10), and a(11).
		

Crossrefs

Cf. A006530.

Programs

  • PARI
    gpf(n) = if(n == 1, 1, vecmax(factor(n)[,1]))
    \\ returns the first n terms of the sequence:
    A362071UpTon(n) = { my(m = matrix(n,2,a,b,if(b==1,1))); for(i = 2, n, g = gpf(m[i-1,1]); m[i,1] = m[primepi(g)+1,2]++); return(m[,1])}