This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362077 #18 Aug 28 2023 08:21:24 %S A362077 1,2,3,4,6,8,9,10,12,15,14,16,20,18,21,22,24,28,27,30,33,26,32,5,7,11, %T A362077 13,17,19,23,25,34,36,40,44,39,38,42,45,48,35,46,50,51,52,54,56,60,64, %U A362077 66,57,58,62,68,63,69,70,72,55,74,76,75,78,81,80,65,82,84,88,92,87,86,90,96,102,93 %N A362077 a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number that has not yet appeared that is a multiple of Omega(a(n-1)). %C A362077 Other than the first three terms the only other primes in the first 500000 terms are the consecutive terms a(24)..a(30) = 5, 7, 11, 13, 17, 19, 23. It is unknown if more exist. %C A362077 In the same range the fixed points are 1, 2, 3, 4, and 48559, although it is possible more exist. %H A362077 Scott R. Shannon, <a href="/A362077/b362077.txt">Table of n, a(n) for n = 1..10000</a> %H A362077 Scott R. Shannon, <a href="/A362077/a362077.png">Image of the first 200000 terms</a>. The green line is a(n) = n. %e A362077 a(4) = 4 as Omega(a(3)) = A001222(3) = 1, and 4 is the smallest unused number that is a multiple of 1. %e A362077 a(10) = 15 as Omega(a(9)) = A001222(12) = 3, and 15 is the smallest unused number that is a multiple of 3. %o A362077 (Python) %o A362077 from sympy import primeomega %o A362077 from itertools import count, islice %o A362077 def A362077_gen(): # generator of terms %o A362077 a, b = {1,2}, 2 %o A362077 yield from (1,2) %o A362077 while True: %o A362077 for b in count(p:=primeomega(b),p): %o A362077 if b not in a: %o A362077 yield b %o A362077 a.add(b) %o A362077 break %o A362077 A362077_list = list(islice(A362077_gen(),20)) # _Chai Wah Wu_, Apr 11 2023 %Y A362077 Cf. A001222, A362031, A354606, A000005, A124056, A342585. %K A362077 nonn %O A362077 1,2 %A A362077 _Scott R. Shannon_, Apr 08 2023