This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362078 #11 Apr 08 2023 11:07:03 %S A362078 1,1,1,1,1,3,1,1,5,10,1,1,7,22,35,1,1,9,37,105,126,1,1,11,55,215,511, %T A362078 462,1,1,13,76,369,1271,2534,1716,1,1,15,100,571,2526,7651,12720,6435, %U A362078 1,1,17,127,825,4401,17577,46614,64449,24310,1,1,19,157,1135,7026,34412,123810,286599,328900,92378 %N A362078 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = [x^n] 1/(1 - x*(1+x)^k)^n. %F A362078 T(n,k) = Sum_{j=0..n} (-1)^j * binomial(-n,j) * binomial(k*j,n-j) = Sum_{j=0..n} binomial(n+j-1,j) * binomial(k*j,n-j). %e A362078 Square array begins: %e A362078 1, 1, 1, 1, 1, 1, ... %e A362078 1, 1, 1, 1, 1, 1, ... %e A362078 3, 5, 7, 9, 11, 13, ... %e A362078 10, 22, 37, 55, 76, 100, ... %e A362078 35, 105, 215, 369, 571, 825, ... %e A362078 126, 511, 1271, 2526, 4401, 7026, ... %o A362078 (PARI) T(n, k) = sum(j=0, n, binomial(n+j-1, j)*binomial(k*j, n-j)); %Y A362078 Columns k=0..3 give A088218, A213684, A362087, A362088. %Y A362078 Main diagonal gives A362080. %Y A362078 Cf. A362079. %K A362078 nonn,tabl %O A362078 0,6 %A A362078 _Seiichi Manyama_, Apr 08 2023