This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362079 #11 Apr 08 2023 11:06:58 %S A362079 1,1,0,1,1,0,1,2,3,0,1,3,7,10,0,1,4,12,28,45,0,1,5,18,55,145,251,0,1, %T A362079 6,25,92,315,896,1624,0,1,7,33,140,571,2106,6328,11908,0,1,8,42,200, %U A362079 930,4076,15946,50212,97545,0,1,9,52,273,1410,7026,32718,134730,441489,880660,0 %N A362079 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = [x^n] 1/(1 - x*(1+x)^n)^k. %F A362079 T(n,k) = Sum_{j=0..n} (-1)^j * binomial(-k,j) * binomial(n*j,n-j) = Sum_{j=0..n} binomial(j+k-1,j) * binomial(n*j,n-j). %e A362079 Square array begins: %e A362079 1, 1, 1, 1, 1, 1, ... %e A362079 0, 1, 2, 3, 4, 5, ... %e A362079 0, 3, 7, 12, 18, 25, ... %e A362079 0, 10, 28, 55, 92, 140, ... %e A362079 0, 45, 145, 315, 571, 930, ... %e A362079 0, 251, 896, 2106, 4076, 7026, ... %o A362079 (PARI) T(n, k) = sum(j=0, n, binomial(j+k-1, j)*binomial(n*j, n-j)); %Y A362079 Columns k=0..3 give A000007, A099237, A362084, A362085. %Y A362079 Main diagonal gives A362080. %Y A362079 Cf. A362078. %K A362079 nonn,tabl %O A362079 0,8 %A A362079 _Seiichi Manyama_, Apr 08 2023