This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362081 #68 Jun 16 2023 13:47:44 %S A362081 1,2,4,6,12,24,30,36,72,120,360,420,840,1680,2520,4032,5040,10080, %T A362081 25200,32760,65520,98280,194040,196560,388080,942480,1801800,3160080, %U A362081 3603600,6320160,12640320,24504480,53721360,61981920,73513440,115315200,122522400,189909720,192099600,214885440 %N A362081 Numbers k achieving record abundance (sigma(k) > 2*k) via a residue-based measure M(k) (see Comments), analogous to superabundant numbers A004394. %C A362081 The residue-based quantifier function, M(k) = (k+1)*(1 - zeta(2)/2) - 1 - ( Sum_{j=1..k} k mod j )/k, measures either abundance (sigma(k) > 2*k), or deficiency (sigma(k) < 2*k), of a positive integer k. It follows from the known facts that Sum_{j=1..k} (sigma(j) + k mod j) = k^2 and that the average order of sigma(k)/k is Pi^2/6 = zeta(2) (see derivation below). %C A362081 M(k) ~ 0 when sigma(k) ~ 2*k and for sufficiently large k, M(k) is positive when k is an abundant number (A005101) and negative when k is a deficient number (A005100). The terms of this sequence are the abundant k for which M(k) > M(m) for all m < k, analogous to the superabundant numbers A004394, which utilize sigma(k)/k as the measure. However, sigma(k)/k does not give a meaningful measure of deficiency, whereas M(k) does, thus a sensible notion of superdeficient (see A362082). %H A362081 Jeffrey C. Lagarias, <a href="https://arxiv.org/abs/math/0008177">An Elementary Problem Equivalent to the Riemmann Hypothesis</a>, arXiv:math/0008177 [math.NT], 2000-2001; Amer. Math. Monthly, 109 (2002), 534-543. %F A362081 Derived starting with lemmas 1-3: %F A362081 1) Sum_{j=1..k} (sigma(j) + k mod j) = k^2. %F A362081 2) The average order of sigma(k)/k is Pi^2/6 = zeta(2). %F A362081 3) R(k) = Sum_{j=1..k} k mod j, so R(k)/k is the average order of (k mod j). %F A362081 Then: %F A362081 Sum_{j=1..k} sigma(j) ~ zeta(2)*Sum_{j=1..k} j = zeta(2)*(k^2+k)/2. %F A362081 R(k)/k ~ k - k*zeta(2)/2 - zeta(2)/2. %F A362081 0 ~ (k+1)*(1 - zeta(2)/2) - 1 - R(k)/k. %F A362081 Thus M(k) = (k+1)*(1 - zeta(2)/2) - 1 - R(k)/k is a measure of variance about sigma(k) ~ 2*k corresponding to M(k) ~ 0. %e A362081 The abundance measure is initially negative, becoming positive for k > 30. Initial measures with factorizations from the Mathematica program: %e A362081 1 -0.64493406684822643647 {{1,1}} %e A362081 2 -0.46740110027233965471 {{2,1}} %e A362081 4 -0.36233516712056609118 {{2,2}} %e A362081 6 -0.25726923396879252765 {{2,1},{3,1}} %e A362081 12 -0.10873810118013850374 {{2,2},{3,1}} %e A362081 24 -0.10334250226949712257 {{2,3},{3,1}} %e A362081 30 -0.096478036147509765322 {{2,1},{3,1},{5,1}} %e A362081 36 0.068719763307810925260 {{2,2},{3,2}} %e A362081 72 0.12657322670640173542 {{2,3},{3,2}} %t A362081 Clear[max, Rp, R, seqtable, M]; %t A362081 max = -1; Rp = 0; seqtable = {}; %t A362081 Do[R = Rp + 2 k - 1 - DivisorSigma[1, k]; %t A362081 M = N[(k + 1)*(1 - Zeta[2]/2) - 1 - R/k, 20]; %t A362081 If[M > max, max = M; Print[k, " ", max, " ", FactorInteger[k]]; %t A362081 AppendTo[seqtable, k]]; %t A362081 Rp = R, {k, 1, 1000000000}]; %t A362081 Print[seqtable] %o A362081 (PARI) M(n) = (n+1)*(1 - zeta(2)/2) - 1 - sum(k=2, n, n%k)/n; %o A362081 lista(nn) = my(m=-oo, list=List()); for (n=1, nn, my(mm = M(n)); if (mm > m, listput(list, n); m = mm);); Vec(list); \\ _Michel Marcus_, Apr 21 2023 %Y A362081 Cf. A362082 (superdeficient), A362083 (analogous to A335067, A326393). %Y A362081 Cf. A004394, A004490, A002201, A005100, A005101, A004125, A024916, A000290, A120444, A235796, A000396, A000079. %K A362081 nonn %O A362081 1,2 %A A362081 _Richard Joseph Boland_, Apr 08 2023