This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362086 #35 May 09 2024 07:31:51 %S A362086 3,17,9,13,53,23,29,107,43,17,179,23,79,269,101,113,29,139,1,503,61, %T A362086 199,647,233,251,809,17,103,43,1,373,1187,419,443,61,1,173,1637,191, %U A362086 601,1889,659,53,127,751,1,2447,283,883,2753,953,1,181,1063,367,263,131 %N A362086 Denominator of the continued fraction 1/(2-3/(3-4/(4-5/(...(n-1)-n/(-3))))). %C A362086 Conjecture: Except for 9, every term of this sequence is either a prime or 1. %C A362086 Conjecture: Record values correspond to A248697 (n>3). - _Bill McEachen_, Mar 06 2024 %H A362086 Mohammed Bouras, <a href="https://doi.org/10.5281/zenodo.10992128">The Distribution Of Prime Numbers And Continued Fractions</a>, (ppt) (2022) %F A362086 a(n) = (n^2 + n - 3)/gcd(n^2 + n - 3, 3*A051403(n-3) + n*A051403(n-4)). %F A362086 If gpf(n^2 + n - 3) > n, then we have: %F A362086 a(n) = gpf(n^2 + n - 3), where gpf = "greatest prime factor". %F A362086 If a(n) = a(m) and n < m < a(n), then we have: %F A362086 a(n) = n + m + 1. %F A362086 a(n) divides gcd(n^2 + n - 3, m^2 + m - 3). %e A362086 For n=3, 1/(2 - 3/(-3)) = 1/3, so a(3) = 3. %e A362086 For n=4, 1/(2 - 3/(3 - 4/(-3))) = 13/17, so a(4) = 17. %e A362086 For n=5, 1/(2 - 3/(3 - 4/(4 - 5/(-3)))) = 13/9, so a(5) = 9. %e A362086 a(4) = a(12) = 4 + 12 + 1 = 17. %e A362086 a(7) = a(45) = 7 + 45 + 1 = 53. %Y A362086 Cf. A006530, A014209, A051403, A248697. %K A362086 nonn %O A362086 3,1 %A A362086 _Mohammed Bouras_, May 28 2023