cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A164790 a(n) is the smallest nonnegative number whose American English name has the letter "e" in the n-th position.

Original entry on oeis.org

8, 0, 1, 3, 3, 12, 13, 17, 21, 23, 23, 73, 101, 103, 103, 112, 113, 117, 121, 123, 123, 173, 323, 373, 1103, 1103, 1112, 1113, 1117, 1121, 1123, 1123, 1173, 1323, 1373, 3323, 3373, 11373, 13323, 13373, 17373, 23323, 23373, 73373, 101373, 103323, 103373, 111373
Offset: 1

Views

Author

Claudio Meller, Aug 26 2009

Keywords

Examples

			a(1)=8 ("Eight"), a(2)=0 ("zEro"), a(3)=1 ("onE"), a(4)=3 ("thrEe").
		

References

  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 70.

Crossrefs

See A362120-A362122 for other versions.
Cf. A164789 ("o"), A164791 ("n"), A164792 ("t"), A164793 ("i"), A164794 ("f"), A164795 ("h"), A164796 ("r"), A164797 ("u").

Programs

  • Python
    from num2words import num2words
    from itertools import count, islice
    def n2w(n):
        return "".join(c for c in num2words(n).replace(" and ", "") if c.isalpha())
    def A164790(n, t="e", i0=0): # t is target letter, i0 is start
        return next(i for i in count(i0) if len(w:=n2w(i))>=n and w[n-1]==t)
    print([A164790(n) for n in range(1, 38)]) # Michael S. Branicky, Apr 21 2023
    
  • Python
    # faster for initial segment of sequence; uses n2w/imports above
    def A164790gen(t="e", i0=0, offset=1): # generator of terms w
        adict, n = dict(), offset
        for i in count(i0):
            w = n2w(i)
            if t in w:
                locs = [i+1 for i, c in enumerate(w) if w[i] == t]
                for v in locs:
                    if v not in adict: adict[v] = i
            while n in adict: yield adict[n]; n += 1
    print(list(islice(A164790gen(), 50))) # Michael S. Branicky, Apr 21 2023

Extensions

a(25) and beyond from Michael S. Branicky, Mar 25 2021
Name edited by N. J. A. Sloane, Apr 20 2023

A362120 a(n) is the smallest positive number whose American English name has the letter "e" in the n-th position.

Original entry on oeis.org

8, 7, 1, 3, 3, 12, 13, 17, 21, 23, 23, 73, 101, 103, 103, 112, 113, 117, 121, 123, 123, 173, 323, 373, 1103, 1103, 1112, 1113, 1117, 1121, 1123, 1123, 1173, 1323, 1373, 3323, 3373, 11373, 13323, 13373, 17373, 23323, 23373, 73373, 101373, 103323, 103373, 111373
Offset: 1

Views

Author

N. J. A. Sloane, Apr 20 2023

Keywords

References

  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 70.

Crossrefs

See A164790, A362121, A362122 for other versions.

Programs

  • Python
    from itertools import count
    from num2words import num2words
    def A362120(n): return next(filter(lambda k:len(s:=num2words(k).replace('-','').replace(',','').replace(' and ','').replace(' ',''))>=n and s[n-1]=='e',count(1))) # Chai Wah Wu, Apr 21 2023

A362121 a(n) is the smallest nonnegative number whose British English name has the letter "e" in the n-th position.

Original entry on oeis.org

8, 0, 1, 3, 3, 12, 13, 17, 21, 23, 23, 73, 1700, 108, 107, 101, 103, 103, 112, 113, 117, 121, 123, 123, 173, 323, 373, 1103, 1103, 1112, 1113, 1117, 1121, 1123, 1123, 1173, 1323, 1373, 3323, 3373, 11373, 13323, 13373, 17373, 23323, 23373, 73373, 101123, 101173
Offset: 1

Views

Author

N. J. A. Sloane, Apr 20 2023

Keywords

References

  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 70.

Crossrefs

See A164790, A362120, and A362122 for other versions.

Programs

  • Python
    from num2words import num2words
    from itertools import count, islice
    def n2w(n):
        return "".join(c for c in num2words(n, lang='en_GB') if c.isalpha())
    def A362121(n, t="e", i0=0): # t is target letter, i0 is start
        return next(i for i in count(i0) if len(w:=n2w(i))>=n and w[n-1]==t)
    print([A362121(n) for n in range(1, 31)]) # Michael S. Branicky, Apr 21 2023
    
  • Python
    # faster for initial segment of sequence; uses n2w, imports above
    def A362121gen(t="e", i0=0, offset=1): # generator of terms w
        adict, n = dict(), offset
        for i in count(i0):
            w = n2w(i)
            if t in w:
                locs = [i+1 for i, c in enumerate(w) if w[i] == t]
                for v in locs:
                    if v not in adict: adict[v] = i
            while n in adict: yield adict[n]; n += 1
    print(list(islice(A362121gen(), 50))) # Michael S. Branicky, Apr 21 2023

Extensions

a(14) and beyond from Michael S. Branicky, Apr 21 2023
Showing 1-3 of 3 results.