This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362134 #14 Mar 26 2025 08:32:17 %S A362134 1,2,3,4,5,6,8,7,10,12,16,9,11,13,15,19,14,18,22,17,20,28,24,32,26,21, %T A362134 31,25,34,27,33,23,30,40,36,29,35,39,37,43,42,47,51,45,41,38,49,44,53, %U A362134 48,52,56,57,60,55,59,63,64,61,65,69,67,54,66,58,75,77,71,72,70,79,73,62,78,68,76,80,84 %N A362134 Novel terms in A360179, in order of appearance. %C A362134 In other words, numbers A360179(n) that do not appear in A360179(1..n-1). %C A362134 Row maxima of A360179, read as an irregular triangle of rows whose terms strictly increase. %H A362134 Michael De Vlieger, <a href="/A362134/b362134.txt">Table of n, a(n) for n = 1..58188</a> %H A362134 Michael De Vlieger, <a href="/A362134/a362134.png">Scatterplot of a(n)</a> n = 1..47545 (all novel terms that appear in A360179(1..2^28)). %F A362134 A362127 contains records in this sequence. %e A362134 A360179 read as an irregular triangle with rows of length A362135(n): %e A362134 n: row n %e A362134 -------------- %e A362134 1: 1; %e A362134 2: 1, 2; %e A362134 3: 2, 3; %e A362134 4: 2, 4; %e A362134 5: 3, 5; %e A362134 6: 2, 4, 6; %e A362134 7: 4, 6, 8; %e A362134 8: 4, 7; %e A362134 9: 2, 5, 7, 10; %e A362134 10: 4, 7, 10, 12; %e A362134 11: 6, 8, 12, 16; %e A362134 12: 5, 9; %e A362134 etc. %e A362134 Terms in this sequence appear at the end of the rows as consequence of the definition of A360179. %t A362134 nn = 800; %t A362134 c[_] := False; h[_] := 0; f[n_] := DivisorSigma[0, n]; %t A362134 a[1] = j = u = w = 1; %t A362134 {1}~Join~Rest@ Reap[Do[ %t A362134 If[c[j], %t A362134 k = j + f[u]; h[j]++; h[u]--, %t A362134 k = f[j]; c[j] = True; h[j]++; Sow[j] ]; %t A362134 u = Min[u, j]; Set[{a[n], q[k], j}, {k, True, k}]; %t A362134 While[h[u] == 0, u++], {n, 2, nn}] ][[-1, -1]] %Y A362134 Cf. A000005, A360179, A362127, A362135. %K A362134 nonn %O A362134 1,2 %A A362134 _Michael De Vlieger_, Apr 10 2023