cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362142 Triangle read by rows: T(n,k) is the maximum number of ways in which a set of integer-sided squares can tile an n X k rectangle, 0 <= k <= n.

This page as a plain text file.
%I A362142 #12 Apr 11 2023 11:54:16
%S A362142 1,1,1,1,1,1,1,1,2,4,1,1,3,6,16,1,1,4,12,37,140,1,1,6,24,105,454,1987,
%T A362142 1,1,10,40,250,1566,9856,62266,1,1,15,80,726,5670,47394,406168,
%U A362142 3899340,1,1,21,160,1824,18738,223696,2916492,38322758,508317004
%N A362142 Triangle read by rows: T(n,k) is the maximum number of ways in which a set of integer-sided squares can tile an n X k rectangle, 0 <= k <= n.
%H A362142 Pontus von Brömssen, <a href="/A362142/b362142.txt">Table of n, a(n) for n = 0..90</a> (rows 0..12)
%e A362142 Triangle begins:
%e A362142   n\k| 0  1  2  3   4    5     6      7       8
%e A362142   ---+-----------------------------------------
%e A362142   0  | 1
%e A362142   1  | 1  1
%e A362142   2  | 1  1  1
%e A362142   3  | 1  1  2  4
%e A362142   4  | 1  1  3  6  16
%e A362142   5  | 1  1  4 12  37  140
%e A362142   6  | 1  1  6 24 105  454  1987
%e A362142   7  | 1  1 10 40 250 1566  9856  62266
%e A362142   8  | 1  1 15 80 726 5670 47394 406168 3899340
%e A362142 A 5 X 4 rectangle can be tiled by 12 unit squares and 2 squares of side 2 in the following ways:
%e A362142   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
%e A362142   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
%e A362142   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
%e A362142   |   |   |   |   |   |       |   |   |   |   |       |   |   |   |   |       |
%e A362142   +---+---+---+---+   +       +---+---+   +---+       +---+   +---+---+       +
%e A362142   |   |   |       |   |       |   |   |   |   |       |   |   |   |   |       |
%e A362142   +---+---+       +   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
%e A362142   |       |       |   |       |   |   |   |       |   |   |   |       |   |   |
%e A362142   +       +---+---+   +       +---+---+   +       +---+---+   +       +---+---+
%e A362142   |       |   |   |   |       |   |   |   |       |   |   |   |       |   |   |
%e A362142   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
%e A362142 .
%e A362142   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
%e A362142   |   |       |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |
%e A362142   +---+       +---+   +---+---+---+---+   +---+---+---+---+   +       +---+---+
%e A362142   |   |       |   |   |       |   |   |   |   |   |   |   |   |       |   |   |
%e A362142   +---+---+---+---+   +       +---+---+   +---+---+---+---+   +---+---+---+---+
%e A362142   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |   |
%e A362142   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
%e A362142   |       |   |   |   |   |       |   |   |       |       |   |       |   |   |
%e A362142   +       +---+---+   +---+       +---+   +       +       +   +       +---+---+
%e A362142   |       |   |   |   |   |       |   |   |       |       |   |       |   |   |
%e A362142   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
%e A362142 .
%e A362142   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
%e A362142   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
%e A362142   +---+---+       +   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
%e A362142   |   |   |       |   |   |       |   |   |   |   |   |   |   |   |   |       |
%e A362142   +---+---+---+---+   +---+       +---+   +---+---+---+---+   +---+---+       +
%e A362142   |   |   |   |   |   |   |       |   |   |       |       |   |       |       |
%e A362142   +---+---+---+---+   +---+---+---+---+   +       +       +   +       +---+---+
%e A362142   |       |   |   |   |   |       |   |   |       |       |   |       |   |   |
%e A362142   +       +---+---+   +---+       +---+   +---+---+---+---+   +---+---+---+---+
%e A362142   |       |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |
%e A362142   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
%e A362142 .
%e A362142   +---+---+---+---+
%e A362142   |   |       |   |
%e A362142   +---+       +---+
%e A362142   |   |       |   |
%e A362142   +---+---+---+---+
%e A362142   |   |   |   |   |
%e A362142   +---+---+---+---+
%e A362142   |   |       |   |
%e A362142   +---+       +---+
%e A362142   |   |       |   |
%e A362142   +---+---+---+---+
%e A362142 The first six of these have no symmetries, so they account for 4 tilings each. The next six have either a mirror symmetry or a rotational symmetry and account for 2 tilings each. The last has full symmetry and accounts for 1 tiling. In total there are 6*4+6*2+1 = 37 tilings. This is the maximum for a 5 X 4 rectangle, so T(5,4) = 37.
%Y A362142 Main diagonal: A362143.
%Y A362142 Columns: A000012 (k = 0,1), A073028 (k = 2), A362144 (k = 3), A362145 (k = 4), A362146 (k = 5).
%Y A362142 Cf. A219924, A224697, A361216 (rectangular pieces).
%K A362142 nonn,tabl
%O A362142 0,9
%A A362142 _Pontus von Brömssen_, Apr 10 2023