This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362147 #34 Nov 22 2024 11:07:37 %S A362147 2,3,4,5,6,7,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,28,29, %T A362147 30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, %U A362147 54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,82,83,84 %N A362147 Numbers that are not cubefull. %C A362147 Integers m for which there is a prime p that divides m, but p^3 does not divide m. %C A362147 Complement of A036966. %e A362147 2|24 and 2^3|24, but 3|24 and 3^3 does not divide 24, so 24 is a term. %t A362147 Select[Range[2, 100], Min[FactorInteger[#][[;; , 2]]] < 3 &] (* _Amiram Eldar_, Apr 09 2023 *) %o A362147 (PARI) isok(k) = (k!=1) && (vecmin(factor(k)[, 2])<=2); \\ _Michel Marcus_, Apr 12 2023 %o A362147 (Python) %o A362147 from math import gcd %o A362147 from sympy import integer_nthroot, factorint %o A362147 def A362147(n): %o A362147 def f(x): %o A362147 c = n %o A362147 for w in range(1,integer_nthroot(x,5)[0]+1): %o A362147 if all(d<=1 for d in factorint(w).values()): %o A362147 for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1): %o A362147 if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()): %o A362147 c += integer_nthroot(z//y**4,3)[0] %o A362147 return c %o A362147 m, k = n, f(n) %o A362147 while m != k: m, k = k, f(k) %o A362147 return m # _Chai Wah Wu_, Nov 22 2024 %Y A362147 Cf. A004709 (cubefree), A046099 (not cubefree), A036966 (cubefull), A362148 (non-cubefree that are not cubefull). %K A362147 nonn %O A362147 1,1 %A A362147 _Bernard Schott_, Apr 09 2023