This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362151 #20 May 12 2023 16:28:41 %S A362151 2,5,1,8,2,4,9,0,3,2,5,7,2,9,6,7,5,3,9,2,0,4,0,7,1,0,5,9,5,4,2,6,8,7, %T A362151 0,0,2,9,3,4,5,3,5,8,6,7,8,8,6,7,7,9,4,3,8,1,4,6,2,0,6,2,1,8,5,3,6,8, %U A362151 3,9,3,9,9,3,4,8,8,4,6,9,4,2,4,9,3,5,1,6,9,3,4,0,5,8,5,4,2,0,8,9,8,5,0,6,8,0,4,4,0,4,2,1,8,7,3 %N A362151 Decimal expansion of exp(zeta(2)/exp(gamma)) where gamma is the Euler-Mascheroni constant A001620. %C A362151 Theorem: Let p(n) be the smallest prime p such that Product_{prime p<=p(n)} (1 + 1/p) >= n. Then lim_{n->oo} p(n+1)/p(n) = exp(zeta(2)/exp(gamma)). %C A362151 Proof: %C A362151 Follow E. C. Titchmarsh and D. R. Heath-Brown p. 67 eq. (3.15.3). %C A362151 Product_{p<=x} (1+1/p) ~ log(x)*exp(gamma)/zeta(2). %C A362151 For any particular integer n, it follows from the equations %C A362151 n = log(x)*exp(gamma)/zeta(2) -> x_n = exp(n*exp(-gamma)*zeta(2)) and %C A362151 n+1 = log(x)*exp(gamma)/zeta(2) -> x_(n+1) = exp((n+1)*exp(-gamma)*zeta(2)) %C A362151 that lim_{n->oo} exp((n+1)*exp(-gamma)*zeta(2))/exp(n*exp(-gamma)*zeta(2)) = exp(zeta(2)/exp(gamma)). %C A362151 Convergence table: %C A362151 n p(n) truncated product up to p(n) ratio p(n)/p(n-1) %C A362151 22 667038311 22.0000000031301736805108740934458 2.51828570030407176 %C A362151 23 1679809291 23.0000000125715665307020553151962 2.51831006300326279 %C A362151 24 4230219377 24.0000000051805484055085694624554 2.51827359192764460 %C A362151 25 10652786759 25.0000000022564574124503565355420 2.51825870235476442 %C A362151 26 26826453991 26.0000000003663337659198715971438 2.51825692167692061 %C A362151 27 67555877849 27.0000000003436918565017475632101 2.51825596747390854 %C A362151 28 170122677001 28.0000000000496255633187331645369 2.51825129681914497 %C A362151 29 428411419313 29.0000000000157769668449867937821 2.51824992919951377 %C A362151 oo oo oo 2.51824903257296753 %D A362151 E. C. Titchmarsh and D. R. Heath-Brown, The theory of the Riemann zeta-function, 2nd ed., 1986. %F A362151 Equals exp(A013661/exp(A001620)). %F A362151 Limit_{n->oo} A072997(n+1)/A072997(n). %e A362151 2.518249032572967539204071059542687... %t A362151 RealDigits[N[Exp[Zeta[2]/Exp[EulerGamma]], 115]][[1]] %Y A362151 Cf. A001620, A013661, A072997, A360895. %K A362151 cons,nonn %O A362151 1,1 %A A362151 _Artur Jasinski_, Apr 09 2023