cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362173 a(n) = n! * Sum_{k=0..floor(n/3)} (n/6)^k * binomial(n-2*k,k)/(n-2*k)!.

This page as a plain text file.
%I A362173 #30 Feb 16 2025 08:34:05
%S A362173 1,1,1,4,17,51,481,3676,18369,272917,3011201,21058236,427112401,
%T A362173 6160655359,55380250017,1423658493076,25361574327041,278603741558601,
%U A362173 8673295084155649,183914415577719892,2387417408385462801,87273239189497636171,2146479566819857007201
%N A362173 a(n) = n! * Sum_{k=0..floor(n/3)} (n/6)^k * binomial(n-2*k,k)/(n-2*k)!.
%H A362173 Winston de Greef, <a href="/A362173/b362173.txt">Table of n, a(n) for n = 0..441</a>
%H A362173 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362173 a(n) = n! * [x^n] exp(x + n*x^3/6).
%F A362173 E.g.f.: exp( ( -2*LambertW(-x^3/2) )^(1/3) ) / (1 + LambertW(-x^3/2)).
%o A362173 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((-2*lambertw(-x^3/2))^(1/3))/(1+lambertw(-x^3/2))))
%Y A362173 Main diagonal of A362043.
%Y A362173 Cf. A277614, A362300, A362301.
%K A362173 nonn
%O A362173 0,4
%A A362173 _Seiichi Manyama_, Apr 14 2023