This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362197 #13 May 07 2023 06:30:42 %S A362197 1,1,2,5,12,27,58,121,248,503,1013,2025,4005,7801,14899,27809,50627, %T A362197 89829,155364,262125,431890,695839,1097768,1698137,2579106,3850731, %U A362197 5658511,8192497,11698195,16489517,22964057,31620993,43081941,58115113,77663158,102875093 %N A362197 Number of Grassmannian permutations of size n that avoid a pattern, sigma, where sigma is a pattern of size 10 with exactly one descent. %C A362197 A permutation is said to be Grassmannian if it has at most one descent. The definition for sigma is a pattern of size 10 with exactly one descent. For example, sigma can be chosen to be 124789356(10), 247913568(10), 36(10)1245789, 57(10)1234689, etc. %H A362197 J. B. Gil and J. Tomasko, <a href="https://doi.org/10.54550/ECA2022V2S4PP6">Restricted Grassmannian permutations</a>, ECA 2:4 (2022) Article S4PP6. %H A362197 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1). %F A362197 a(n) = 1 + Sum_{i=2..9} binomial(n,i). %F A362197 G.f.: (1-9*x+37*x^2-90*x^3+142*x^4-150*x^5+106*x^6-48*x^7+13*x^8-x^9)/(1-x)^10. %Y A362197 Cf. A000325, A362196. %K A362197 nonn,easy %O A362197 0,3 %A A362197 _Jessica A. Tomasko_, Apr 29 2023