This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362200 #8 Apr 16 2023 20:34:04 %S A362200 11733,15117,17245,28113,32365,34413,48745,78481,93453,101665,102957, %T A362200 105333,108753,134097,143101,157713,163801,170853,190621,208293, %U A362200 212545,233097,273417,274893,294301,300385,323281,346497,354565,363777,390205,405357,470341,500217,501477,542193,555153,561205 %N A362200 Semiprimes k such that k+1, k+2, 2*k+1 and 2*k+3 are also semiprimes. %C A362200 Numbers k such that 2*k+1 and 2*k+3 are both in A092192. %C A362200 All terms == 1 or 33 (mod 36). %H A362200 Robert Israel, <a href="/A362200/b362200.txt">Table of n, a(n) for n = 1..1000</a> %e A362200 a(3) = 17245 is a term because 17245 = 5 * 3449, 17246 = 2 * 8623, 17247 = 3 * 5749, 2 * 17245 + 1 = 34491 = 3 * 11497 and 2 * 17245 + 3 = 34493 = 17 * 2029 are all semiprimes. %p A362200 SP:= select(t -> numtheory:-bigomega(t)=2, {$1..2*10^6}): %p A362200 A:= SP intersect map(`-`,SP,1) intersect map(`-`,SP,2): %p A362200 SPO:= select(type,SP,odd): %p A362200 A:= A intersect map(t -> (t-1)/2, SPO) intersect map(t -> (t-3)/2, SPO): %p A362200 sort(convert(A,list)); %Y A362200 Cf. A001358, A092192. %K A362200 nonn %O A362200 1,1 %A A362200 _Zak Seidov_ and _Robert Israel_, Apr 10 2023