This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362222 #17 Apr 16 2023 20:27:20 %S A362222 1,3,4,7,12,17,18,19,20,27,28,29,30,31,32,37,42,43,48,49,50,57,58,65, %T A362222 66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,93,96,97,100,103,104, %U A362222 105,124,133,138,147,148,153,154,163,166,171,184,193,196,197,198,205 %N A362222 Slowest increasing sequence where a(n) + n^2 is a prime. %H A362222 Michael S. Branicky, <a href="/A362222/b362222.txt">Table of n, a(n) for n = 1..10000</a> %e A362222 a(2) = 3, since the smallest number greater than all the previous terms which gives a prime when added to 2^2 is 3. %p A362222 R:= 1: t:= 1: %p A362222 for n from 2 to 100 do %p A362222 t:= nextprime(t+n^2)-n^2; %p A362222 R:= R,t %p A362222 od: %p A362222 R; # _Robert Israel_, Apr 11 2023 %t A362222 a[n_] := a[n] = Module[{k = a[n - 1] + 1}, While[! PrimeQ[n^2 + k], k++]; k]; a[0] = 0; Array[a, 100] (* _Amiram Eldar_, Apr 12 2023 *) %o A362222 (PARI) seq(n)={my(a=vector(n), p=0); for(n=1, #a, p++; while(!isprime(p+n^2), p++); a[n]=p); a} \\ _Andrew Howroyd_, Apr 11 2023 %o A362222 (Python) %o A362222 from sympy import nextprime %o A362222 from itertools import count, islice %o A362222 def agen(): # generator of terms %o A362222 an = 1 %o A362222 for n in count(2): %o A362222 yield an %o A362222 an = nextprime(an + n**2) - n**2 %o A362222 print(list(islice(agen(), 62))) # _Michael S. Branicky_, Apr 16 2023 %Y A362222 Cf. A053000, A107819. %K A362222 nonn %O A362222 1,2 %A A362222 _Angad Singh_, Apr 11 2023