This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362243 #13 Aug 28 2023 15:50:43 %S A362243 5,8,12,18,22,32,36,42,46,60,66,80,84,90,94,108,118,128,138,142,152, %T A362243 162,166,180,200,204,210,214,224,228,258,262,276,282,300,306,320,330, %U A362243 334,348,358,368,382,392,396,402,426,450,454,464,468,478,488,502,516,526,540,546,560,564,570 %N A362243 a(n) = number of isomorphism classes of elliptic curves over the finite field of order prime(n). %H A362243 Paolo Xausa, <a href="/A362243/b362243.txt">Table of n, a(n) for n = 1..10000</a> %H A362243 H. W. Lenstra, <a href="https://www.jstor.org/stable/1971363">Factoring integers with elliptic curves</a>, Ann. of Math. (2) 126 (1987), no. 3, 649-673. %H A362243 S. Marseglia, <a href="https://arxiv.org/abs/1808.03673">Computing abelian varieties over finite fields isogenous to a power</a>, arXiv:1808.03673 [math.AG], 2018. %F A362243 a(1) = 5, a(2) = 8, and for n > 2, a(n) = 2*prime(n) + C, where C is 6, 2, 4, 0 if prime(n) is 1, 5, 7, 11 mod 12 respectively. %e A362243 For n = 1, the a(1) = 5 elliptic curves over F_2 can be given by their Weierstrass models as: y^2 + y = x^3, y^2 + y = x^3 + x, y^2 + y = x^3 + x + 1, y^2 + x*y = x^3 + 1, y^2 + x*y + y = x^3 + 1. %e A362243 For n = 2, the a(2) = 8 elliptic curves over F_3 can be given by their Weierstrass models as: y^2 = x^3 + x, y^2 = x^3 + 2*x, y^2 = x^3 + 2*x + 1, y^2 = x^3 + 2*x + 2, y^2 = x^3 + x^2 + 1, y^2 = x^3 + x^2 + 2, y^2 = x^3 + 2*x^2 + 1, y^2 = x^3 + 2*x^2 + 2. %e A362243 For n = 3, the a(3) = 12 elliptic curves over F_5 can be given by their Weierstrass models as: y^2 = x^3 + 1, y^2 = x^3 + 2, y^2 = x^3 + x, y^2 = x^3 + x + 1, y^2 = x^3 + x + 2, y^2 = x^3 + 2*x, y^2 = x^3 + 2*x + 1, y^2 = x^3 + 3*x, y^2 = x^3 + 3*x + 2, y^2 = x^3 + 4*x, y^2 = x^3 + 4*x + 1, y^2 = x^3 + 4*x + 2. %t A362243 A362243list[nmax_]:=Map[2#+{6,1,2,0,2,0,4,0,0,0,0}[[Mod[#,12]]]&,Prime[Range[nmax]]];A362243list[100] (* _Paolo Xausa_, Aug 28 2023 *) %o A362243 (Sage) %o A362243 def a(n): %o A362243 if n == 1: %o A362243 return 5 %o A362243 if n == 2: %o A362243 return 8 %o A362243 p = Primes()[n-1] %o A362243 r = [1, 5, 7, 11] %o A362243 C = [6, 2, 4, 0] %o A362243 return 2*p + C[r.index(p%12)] %K A362243 nonn %O A362243 1,1 %A A362243 _Robin Visser_, Apr 12 2023