This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362258 #10 Apr 16 2023 08:37:54 %S A362258 1,1,1,1,1,1,1,1,1,1,1,1,2,2,4,1,1,2,4,13,20,1,1,4,8,33,125,277,1,1,6, %T A362258 12,72,403,2505,7855,1,1,9,22,204,1438,12069,101587,487662 %N A362258 Triangle read by rows: T(n,k) is the maximum number of ways in which a set of integer-sided squares can tile an n X k rectangle, up to rotations and reflections, 0 <= k <= n. %F A362258 T(n,k) >= A362142(n,k)/4 if n != k. %F A362258 T(n,n) >= A362142(n,n)/8. %e A362258 Triangle begins: %e A362258 n\k| 0 1 2 3 4 5 6 7 8 %e A362258 ---+---------------------------------------- %e A362258 0 | 1 %e A362258 1 | 1 1 %e A362258 2 | 1 1 1 %e A362258 3 | 1 1 1 1 %e A362258 4 | 1 1 2 2 4 %e A362258 5 | 1 1 2 4 13 20 %e A362258 6 | 1 1 4 8 33 125 277 %e A362258 7 | 1 1 6 12 72 403 2505 7855 %e A362258 8 | 1 1 9 22 204 1438 12069 101587 487662 %e A362258 See A362142 for an illustration of T(5,4) = 13. %e A362258 The following table shows which sets of squares can tile the n X k rectangle in T(n,k) ways. A list x_1, ..., x_j represents a set of x_1 squares of side 1, ..., x_j squares of side j. When there are multiple solutions they are shown on separate lines. For (n,k) = (4,3), for example, the maximum number T(4,3) = 2 of tilings is obtained both for the set of 8 squares of side 1 and 1 square of side 2, and for the set of 4 squares of side 1 and 2 squares of side 2. %e A362258 n\k| 1 2 3 4 5 6 7 8 %e A362258 ---+------------------------------------------------ %e A362258 1 | 1 %e A362258 2 | 2 4 %e A362258 | 0,1 %e A362258 3 | 3 6 9 %e A362258 | 2,1 5,1 %e A362258 | 0,0,1 %e A362258 4 | 4 4,1 8,1 8,2 %e A362258 | 4,2 %e A362258 5 | 5 6,1 7,2 12,2 13,3 %e A362258 | 2,2 %e A362258 6 | 6 4,2 10,2 12,3 14,4 20,4 %e A362258 7 | 7 6,2 13,2 12,4 19,4 22,5 25,6 %e A362258 8 | 8 8,2 12,3 16,4 20,5 24,6 23,6,1 27,7,1 %Y A362258 Main diagonal: A362259. %Y A362258 Columns: A000012 (k = 0,1), A362260 (k = 2), A362261 (k = 3), A362262 (k = 4), A362263 (k = 5). %Y A362258 Cf. A227690, A361221 (rectangular pieces), A362142. %K A362258 nonn,tabl,more %O A362258 0,13 %A A362258 _Pontus von Brömssen_, Apr 15 2023