This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362260 #12 Oct 26 2023 09:54:41 %S A362260 1,1,1,1,2,2,4,6,9,12,19,28,44,66,110,170,255,396,651,1001,1519,2520, %T A362260 4032,6216,9752,15912,25236,38760,63090,101850,160050,248710,408760, %U A362260 653752,1021735,1634776,2656511,4218786,6562556,10737090,17299646,27313650,43249115 %N A362260 Maximum over 0 <= k <= n/2 of the number of permutations of two symbols occurring k and n-2*k times, respectively, where a permutation and its reversal are counted only once. %C A362260 Also, a(n) is the maximum number of ways in which a set of integer-sided squares can tile an n X 2 rectangle, up to rotations and reflections. %H A362260 Robert Israel, <a href="/A362260/b362260.txt">Table of n, a(n) for n = 0..4771</a> %F A362260 a(n) >= A073028(n)/2. %e A362260 For n = 8, the maximum a(8) = 9 is obtained for k = 2. The corresponding permutations of 2 2's and 4 1's are 221111, 212111, 211211, 211121, 211112, 122111, 121211, 121121, and 112211. %p A362260 f:= proc(n) local k, v, m,w; %p A362260 m:= 0: %p A362260 for k from 0 to n/2 do %p A362260 v:= binomial(n-k,k); %p A362260 if n:: even and k::even then w:= binomial((n-k)/2,k/2) %p A362260 elif (n-k)::odd then w:=binomial((n-k-1)/2, floor(k/2)) %p A362260 else w:= 0 %p A362260 fi; %p A362260 m:= max(m,(v+w)/2); %p A362260 od; %p A362260 m %p A362260 end proc: %p A362260 map(f, [$0..50]); # _Robert Israel_, Oct 25 2023 %Y A362260 Row maxima of A102541. %Y A362260 Second column of A362258. %Y A362260 Cf. A001224, A073028, A361224 (rectangular pieces). %K A362260 nonn %O A362260 0,5 %A A362260 _Pontus von Brömssen_, Apr 15 2023