cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362264 Numbers > 9 with increasingly large digit average of their square, in base 10.

This page as a plain text file.
%I A362264 #17 Apr 24 2023 09:40:34
%S A362264 10,11,12,13,17,63,83,313,94863,3162083,994927133
%N A362264 Numbers > 9 with increasingly large digit average of their square, in base 10.
%C A362264 The single-digit number 3, whose square is 9, has the highest possible digit average, therefore this "trivial solution" is excluded. However, the sequence could be defined as "numbers > 3 ..." in which case it would start 4, 6, 7, 63, ... see examples.
%C A362264 It is conjectured but not known that there are only finitely many numbers whose square has a digit average above 8.3.
%C A362264 Can it be proved or disproved that all terms > 17 end in a digit 3?
%C A362264 Next terms might be 707106074079263583 (da = 8.25) and 94180040294109027313 (da = 8.275), but there might be other terms in between.
%e A362264 The respective digit averages are:
%e A362264    n  |    a(n)   |       a(n)^2     | #digits | sum(digits) | digit average
%e A362264   ----+-----------+------------------+---------+-------------+------------------
%e A362264    -  |      4    |          16      |    2    |       7     |    7/2 = 3.5
%e A362264    -  |      6    |          36      |    2    |       9     |    9/2 = 4.5
%e A362264    -  |      7    |          49      |    2    |      13     |   13/2 = 6.5
%e A362264    0  |     10    |         100      |    3    |       1     |    1/3 = 0.333...
%e A362264    1  |     11    |         121      |    3    |       4     |    4/3 = 1.333...
%e A362264    2  |     12    |         144      |    3    |       9     |     3  = 3.0
%e A362264    3  |     13    |         169      |    3    |      16     |   16/3 = 3.333...
%e A362264    4  |     17    |         289      |    3    |      19     |   19/3 = 6.333...
%e A362264    5  |     63    |        3969      |    4    |      27     |   27/4 = 6.75
%e A362264    6  |     83    |        6889      |    4    |      31     |   31/4 = 7.75
%e A362264    7  |    313    |       97969      |    5    |      40     |     8  = 8.0
%e A362264    8  |   94863   |     8998988769   |   10    |      81     |  81/10 = 8.1
%e A362264    9  |  3162083  |   9998768898889  |   13    |     106     | 106/13 = 8.15...
%e A362264   10  | 994927133 |989879999979599689|   18    |     148     |   74/9 = 8.222...
%o A362264 (PARI) m=0; for(k=10,oo, vecsum(d=digits(k^2))>m*#d && !print1(k", ") && m=vecsum(d)/#d)
%Y A362264 Cf. A164841, A068947, A068809.
%K A362264 nonn,base,more,hard
%O A362264 0,1
%A A362264 _M. F. Hasler_, Apr 13 2023