This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362277 #26 Apr 16 2023 09:49:00 %S A362277 1,1,1,1,1,1,1,1,0,1,1,1,-1,-2,1,1,1,-2,-5,-2,1,1,1,-3,-8,1,6,1,1,1, %T A362277 -4,-11,10,41,16,1,1,1,-5,-14,25,106,31,-20,1,1,1,-6,-17,46,201,-44, %U A362277 -461,-132,1,1,1,-7,-20,73,326,-299,-1952,-895,28,1,1,1,-8,-23,106,481,-824,-5123,-1028,6481,1216,1 %N A362277 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} (-k/2)^j * binomial(n-j,j)/(n-j)!. %H A362277 Seiichi Manyama, <a href="/A362277/b362277.txt">Antidiagonals n = 0..139, flattened</a> %F A362277 E.g.f. of column k: exp(x - k*x^2/2). %F A362277 T(n,k) = T(n-1,k) - k*(n-1)*T(n-2,k) for n > 1. %F A362277 T(n,k) = n! * Sum_{j=0..floor(n/2)} (-k/2)^j / (j! * (n-2*j)!). %e A362277 Square array begins: %e A362277 1, 1, 1, 1, 1, 1, 1, ... %e A362277 1, 1, 1, 1, 1, 1, 1, ... %e A362277 1, 0, -1, -2, -3, -4, -5, ... %e A362277 1, -2, -5, -8, -11, -14, -17, ... %e A362277 1, -2, 1, 10, 25, 46, 73, ... %e A362277 1, 6, 41, 106, 201, 326, 481, ... %e A362277 1, 16, 31, -44, -299, -824, -1709, ... %o A362277 (PARI) T(n,k) = n!*sum(j=0,n\2, (-k/2)^j/(j!*(n-2*j)!)); %Y A362277 Columns k=0..6 give A000012, (-1)^n * A001464(n), A293604, A362278, A362176, A362279, A362177. %Y A362277 Main diagonal gives A362276. %Y A362277 T(n,2*n) gives A362282. %Y A362277 Cf. A359762, A362302. %K A362277 sign,tabl %O A362277 0,14 %A A362277 _Seiichi Manyama_, Apr 13 2023