This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362280 #27 Apr 25 2023 09:22:39 %S A362280 1,8,32640,606108303360,288646869784585568256000, %T A362280 3978466023641262138239999300075520000000, %U A362280 4808293482959682489757553576215163849442438886195200000000000,669887741948823664389458168162886859168459418141304785844082510440658108416000000000000 %N A362280 a(n) is the number of n X n matrices using all the integers from 1 to n^2 with trace equal to the antitrace. %F A362280 a(n) = A362291(n)*(m!)^2*(n^2 - 2*m)!, where m = 2*floor(n/2). %e A362280 a(1) = A362209(1,1) = 1 since we have: %e A362280 [1]. %e A362280 a(2) = A362209(5,2) = 8 since we have: %e A362280 [1, 2] [1, 3] [4, 2] [4, 3] %e A362280 [3, 4], [2, 4], [3, 1], [2, 1], %e A362280 . %e A362280 [2, 1] [2, 4] [3, 1] [3, 4] %e A362280 [4, 3], [1, 3], [4, 2], [1, 2]. %o A362280 (Python) %o A362280 from math import factorial %o A362280 from itertools import combinations as C %o A362280 def a(n): %o A362280 E = [i for i in range(1, n**2+1)] %o A362280 m = n if n%2 == 0 else n-1 %o A362280 r = n**2 - 2*m %o A362280 fm, fr = factorial(m), factorial(r) %o A362280 p = fm**2 * fr %o A362280 return p*sum(1 for u in C(E, 2*m) for t in C(u, m) if 2*sum(t)==sum(u)) %o A362280 print([a(n) for n in range(1, 5)]) %Y A362280 Cf. A000142, A001044, A052928, A362209, A362291. %K A362280 nonn,hard,more %O A362280 1,2 %A A362280 _Stefano Spezia_ and _Michael S. Branicky_, Apr 14 2023 %E A362280 a(6)-a(8) calculated from A362291 by _Martin Ehrenstein_, Apr 25 2023