cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362283 Expansion of e.g.f. exp( sqrt(-LambertW(-x^2)) ).

This page as a plain text file.
%I A362283 #13 Feb 16 2025 08:34:05
%S A362283 1,1,1,4,13,106,601,7456,60649,1012348,10748161,225641296,2957978101,
%T A362283 74847384184,1168123938073,34598428916416,626497273410961,
%U A362283 21261683280971536,438222313050326209,16765636110497697088,387549609831150094621,16502188154766906299296
%N A362283 Expansion of e.g.f. exp( sqrt(-LambertW(-x^2)) ).
%H A362283 Seiichi Manyama, <a href="/A362283/b362283.txt">Table of n, a(n) for n = 0..417</a>
%H A362283 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362283 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} A034940(k) * binomial(n-1,2*k) * a(n-2*k-1).
%o A362283 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sqrt(-lambertw(-x^2)))))
%Y A362283 Cf. A000272, A034940, A277614, A362293.
%K A362283 nonn
%O A362283 0,4
%A A362283 _Seiichi Manyama_, Apr 14 2023