cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362284 a(n) is the least number k such that A138705(k) = n, or -1 if no such k exists.

This page as a plain text file.
%I A362284 #15 Aug 28 2023 08:21:28
%S A362284 0,1,5,10,23,6,8,20,50,18,69,66,100,45,56,42,30,40,96,99,72,234,36,
%T A362284 348,156,200,168,120,405,390,216,315,90,198,280,270,792,210,180,624,
%U A362284 1120,360,576,1188,1134,420,750,1140,504,1728,660,600,690,540,630,1380,810
%N A362284 a(n) is the least number k such that A138705(k) = n, or -1 if no such k exists.
%H A362284 Amiram Eldar, <a href="/A362284/b362284.txt">Table of n, a(n) for n = 1..168</a>
%t A362284 seq[len_, nmax_] := Module[{s = Table[-1, {len}], c = 0, n = 0, i}, While[c < len && n <= nmax, i = Length[ContinuedFraction[Abs[BernoulliB[2*n]]]]; If[i <= len && s[[i]] < 0, c++; s[[i]] = n]; n++]; s]; seq[60, 10^4]
%o A362284 (PARI) lista(len, nmax) = {my(s = vector(len,i,-1), c = 0, n = 0, i); while(c < len && n <= nmax, i = #contfrac(abs(bernfrac(2*n))); if(i <= len && s[i] < 0, c++; s[i] = n); n++); s;}
%Y A362284 Cf. A000367, A002445, A027641, A027642, A138705, A362285, A362286.
%K A362284 nonn
%O A362284 1,3
%A A362284 _Amiram Eldar_, Apr 14 2023