cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362288 a(n) = Product_{k=0..n} binomial(n,k)^k.

This page as a plain text file.
%I A362288 #15 Apr 17 2023 02:02:32
%S A362288 1,1,2,27,9216,312500000,4251528000000000,95432797246104853383515625,
%T A362288 14719075154533285649961930052505436160000,
%U A362288 65577306173662530591576256095315195684570038194755952705536
%N A362288 a(n) = Product_{k=0..n} binomial(n,k)^k.
%H A362288 Winston de Greef, <a href="/A362288/b362288.txt">Table of n, a(n) for n = 0..22</a>
%F A362288 a(n) = Product_{k=0..n} n!^k / k!^n.
%F A362288 a(n) = A067055(n) / A255268(n).
%F A362288 a(n) ~ A^n * exp((6*n^3 + 12*n^2 - n - 1)/24) / ((2*Pi)^(n*(n+1)/4) * n^(n*(3*n+2)/12)), where A is the Glaisher-Kinkelin constant A074962.
%t A362288 Table[Product[Binomial[n, k]^k, {k, 0, n}], {n, 0, 10}]
%t A362288 Table[(n!)^(n*(n+1)/2) / BarnesG[n+2]^n, {n, 0, 10}]
%o A362288 (PARI) a(n) = prod(k=0, n, binomial(n,k)^k); \\ _Michel Marcus_, Apr 14 2023
%Y A362288 Cf. A001142, A067055, A167008, A255268, A272093.
%K A362288 nonn
%O A362288 0,3
%A A362288 _Vaclav Kotesovec_, Apr 14 2023