cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362303 a(n) = n! * Sum_{k=0..floor(n/3)} (-n/6)^k * binomial(n-2*k,k)/(n-2*k)!.

This page as a plain text file.
%I A362303 #15 Feb 16 2025 08:34:05
%S A362303 1,1,1,-2,-15,-49,241,3186,17473,-136835,-2591199,-19940194,214217521,
%T A362303 5280969123,52303886545,-714177220574,-21687847310079,
%U A362303 -262685369226919,4351534043729473,157014580915662750,2248361900084617201,-43790588385118719689
%N A362303 a(n) = n! * Sum_{k=0..floor(n/3)} (-n/6)^k * binomial(n-2*k,k)/(n-2*k)!.
%H A362303 Winston de Greef, <a href="/A362303/b362303.txt">Table of n, a(n) for n = 0..441</a>
%H A362303 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362303 a(n) = n! * [x^n] exp(x - n*x^3/6).
%F A362303 E.g.f.: exp( ( 2*LambertW(x^3/2) )^(1/3) ) / (1 + LambertW(x^3/2)).
%o A362303 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((2*lambertw(x^3/2))^(1/3))/(1+lambertw(x^3/2))))
%Y A362303 Main diagonal of A362302.
%K A362303 sign
%O A362303 0,4
%A A362303 _Seiichi Manyama_, Apr 15 2023