This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362304 #15 Feb 16 2025 08:34:05 %S A362304 1,1,1,-5,-31,-99,1201,13231,70785,-1362311,-21562399,-161746749, %T A362304 4263108961,87979472725,849097038609,-28416142768649,-723086288422399, %U A362304 -8532476619366159,346207723221680065,10474480743776327179,146105160034616914401 %N A362304 a(n) = n! * Sum_{k=0..floor(n/3)} (-n/3)^k * binomial(n-2*k,k)/(n-2*k)!. %H A362304 Winston de Greef, <a href="/A362304/b362304.txt">Table of n, a(n) for n = 0..425</a> %H A362304 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A362304 a(n) = A362302(n,2*n). %F A362304 a(n) = n! * [x^n] exp(x - n*x^3/3). %F A362304 E.g.f.: exp( ( LambertW(x^3) )^(1/3) ) / (1 + LambertW(x^3)). %o A362304 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(x^3)^(1/3))/(1+lambertw(x^3)))) %Y A362304 Cf. A362300, A362302. %K A362304 sign %O A362304 0,4 %A A362304 _Seiichi Manyama_, Apr 15 2023